Смекни!
smekni.com

Кривошипно-ползунный механизм, его структура, схема, анализ (стр. 3 из 3)

где

- масса i-го звена,
- длина i-го звена.

Находим моменты от сил инерции:

Момент от сил инерции направлен противоположно направлению действию углового ускорения. Для определения углового ускорения звена необходимо на плане ускорений взять вектор тангенциальной составляющей ускорения звена и мысленно перенести его в ведомую точку звена (точка, стоящая первой в индексе), а ведущую условно остановить. Направление вращения звена при этом будет характеризовать направление углового ускорения звена.

Нанесем на построенное положение механизма все заданные внешние нагрузки. В результате, полученная картина будет являться расчетной схемой данного положения плоского рычажного механизма.


Рисунок 7 – Расчетная схема силового анализа

5. Кинетостатический метод силового анализа

В данном курсовом проекте силовой анализ мы проведем с помощью кинетостатического метода, в основе которого лежит принцип Д’Аламбера. Если к внешним силам, действующим на звенья механизма добавить силы инерции, то данный механизм будет находиться в квазистатическом состоянии. Силовой анализ этого механизма можно выполнить, используя уравнения кинетостатического равновесия:

(30)

Этот метод применяется для анализа движущихся механизмов при известных массах и моментах инерции звеньев.

Для этого разбиваем механизм на структурные группы Ассура и начинаем вычерчивать с последней группы звеньев (группы, связанной с выходным звеном).

Рисунок 6 – Структурная группа Ассура 1


Разорванную связь 1-2 заменяем реакцией R12, раскладывая ее на составляющие

и
, а нормаль XX реакцией R03. Составляем уравнение равновесия:

(31)

(32)

Уравнение равновесия (32) содержит три неизвестных

,
и
, следовательно, его статическая неопределимость равна двум.

С целью раскрытия статической неопределимости найдем модуль

.

Звено АВ:

(33)

В результате проведенных вычислений уравнение (32) содержит две неизвестных

и
, следовательно статическая неопределимость раскрыта полностью. Уравнение равновесия примет следующий вид:

(34)

Определение оставшихся неизвестных выполним с помощью плана сил. Для этого необходимо выбрать масштабный коэффициент плана сил:


(35)

Переведем в масштабный коэффициент

оставшиеся силы:

(36)

По полученным величинам строим план сил в масштабном коэффициенте

(рисунок 7).

По построенному плану сил определяем неизвестные

,
и
:

(37)

Рассмотрим первичный механизм.

Направляем уравновешивающую силу перпендикулярно оси кривошипа, в противоположную сторону вращения оси кривошипа. Вектор выходит из подвижной точки кривошипа.

Составляем уравнение равновесия:


(38)

Составляем уравнение моментов сил относительно точки O:

(39)

Из уравнения (4.23) определяем

:

Уравнение равновесия примем следующий вид:

(4.24)

Определим оставшиеся неизвестные с помощью плана сил. Для этого необходимо выбрать масштабный коэффициент сил:

Переведем в масштабный коэффициент оставшиеся силы:


По полученным данным строим план сил в масштабном коэффициенте

(рисунок 8).

По построенному плану определяем неизвестную реакцию

:

Метод кинетостатики силового анализа завершен.