Смекни!
smekni.com

Моделирование контура стабилизации давления в выходном коллекторе АСУ водоотведения (стр. 4 из 4)

оценка зависимости величины потерь в передаваемых данных от настроек системы ввод/вывод.

Автоматическая имитация входных числовых данных:

Имитация статических данных;

Имитация динамических данных;

Создание искусственных конфигурационных файлов.

Просмотр и редактирование массивов данных, хранящихся в двоичных файлах.

Автоматическое изменение путей в конфигурационных файлах.

Комплекс аппаратного обеспечения АСУ ТП

В состав системы включены:

5 насосов;

Станция управления АСУР;

Центральный диспетчерский пункт;

Частотный преобразователь Micromaster 430 фирмы Siemins - коммутируется с одним из основных насосов;

программируемый логический микроконтроллер DeCont-182 фирмы ДЕП– собирает информацию с датчиков и управляет технологическим оборудованием и регулирует давление;

панель PanelView 550 фирмы Allen-Bradley – отображает текущие параметры системы, аварийные сообщения, предысторию событий, отчет по моточасам, осуществляет ввод команд оператора.

Режимы работы автоматизированной системы

Предусмотрено два режима работы насосов – диспетчерский и автоматический.

В диспетчерском режиме управление насосами сохранено от существующих контакторов и кнопок управления. В автоматическом режиме управление работой насосов и задвижек осуществляет микроконтроллер.

Регулирование давления воды в коллекторе в автоматическом режиме осуществляется одним из основных насосов. В зависимости от изменения сигнала с аналогового датчика, ЧРП меняет частоту вращения электродвигателя насоса. После раскрутки основного насоса до максимальных оборотов и при дальнейшем снижении давления, система через мягкий пускатель обеспечивает плавный, при минимальных пусковых токах и гидродинамических нагрузках, пуск дополнительного насоса. При этом, после включения дополнительного насоса, точная регулировка давления осуществляется основным насосом. При увеличении давления вследствии уменьшения разбора воды система производит отключение дополнительного насоса и понижает частоту вращения двигателя основного насоса до минимальных оборотов. Уставка давления в коллекторе изменяется автоматически в зависимости от времени суток. Определено три вида уставок: ночная, дневная, вечерняя. Кроме того, система поддерживает разные уставки давления в выходные и рабочие дни и осуществляет плавный переход с одной уставки на другую.

При неисправности насосов или задвижек, при максимальном или минимальном давлении на выкиде система автоматически останавливает аварийный насос, запускает резервный и продолжает работу на оставшемся исправном оборудовании до вмешательства оператора. Через панель PanelView оператор может изменять:

режим работы системы – автоматический/штатный;

готовность к пуску насосов – готов/не готов;

установки давления воды в коллекторе.

Внедрение АСУ в систему водоотведения позволяет:

-полностью автоматизировать работу объектов;

-уменьшить потребление

-электроэнергии;

-уменьшить потери, связанные с авариями;

-быстро реагировать на

-резкие изменения водопотребления;

-уменьшить расходы на обслуживание и поиск неисправностей;

-обеспечить дистанционную охрану объекта;

-обеспечить контроль давления;

-вести учет воды и электроэнергии;

-проводить анализ статистических данных.

Моделирование контура стабилизации

На выходном коллекторе системы необходимо регулировать выходное давление .Оно не должно превышать и падать , в следствии неравномерного расхода воды во времени ,ниже заданной величины.

Поэтому необходимо рассмотреть контур регулирования скорости двигателя в зависимости от выходного давления. Спроектированная система автоматической стабилизации давления может быть представлена структурной схемой, изображенной на следующем рисунке:

Рис. 1 Структурная схема.

iзад –сигнал задания давления;

P –давление в трубопроводе;

iдд –сигнал обратной связи с датчика давления;

Di – отклонение текущего значения от заданного;

uk – сигнал управления по напряжению на преобразователь частоты;

Kпч-д – коэффициент передачи преобразователя частоты-двигателя;

Tм – постоянная времени преобразователя частоты-двигателя;

w – скорость двигателя насоса;

Kн – коэффициент передачи насоса;

Tн – постоянная времени насоса;

Kдд – коэффициент передачи датчика давления.

KВ – коэффициент передачи возмущающего воздействия.

Каждый элемент системы представляет собой апериодическое звено.

Рассмотрим каждое звено отдельно:

Преобразователь частоты-двигатель:

=0.01 - ввиду большой скорости срабатывания

Насос. Преобразует циклическую частоту двигателя в давление

=1 – время разгона насоса

Датчик давления. Преобразует давление в токовый сигнал.

Возмущающее воздействие.

Рассчитав перечисленные выше параметры звеньев структурной схемы, проведем моделирование в специализированном программном пакете визуального моделирования MatLabSimulink.


Рис. .Моделирование системы управления без регулятора и возмущающих воздействий в среде Simulink.

Далее проведём моделирование с внешним возмущающим воздействием при помощи открытия отсечного клапана.

Рис. Моделирование системы управления c возмущающим воздействием в среде Simulink


В момент открытия клапана происходит резкое падение давления, а затем система выходит на новое устойчивое состояние с меньшим значением давления.

Последним этапом является моделирование системы управления с регулятором давления, который должен компенсировать возмущающее воздействие.

Вычисление ПИ- регулятора

Объединяет два регулятора П и И, , обладает наилучшими свойствами, а именно: за счет П - составляющей улучшается показательные качества в переходном процессе, а за счет И - составляющей уменьшается ошибка регулирования ® т.е. улучшается точность.

В качестве критерия качества регулирования принимаем желаемую передаточную функцию разомкнутого контура. Для рассматриваемой системы регулирования целесообразно применять настройки контура регулирования на технический оптимум. Желаемую передаточную функцию разомкнутого контура в этом случае записывают в виде:

Передаточная функция оптимального регулятора определяется в виде:

где Wоу (p) – передаточная функция объекта регулирования, Wос (p) – передаточная функция звена обратной связи, Wр.жел (p) – желаемая передаточная функция разомкнутого контура.


В результате синтеза была получена передаточная функция ПИ-регулятора. В общем виде передаточная функция ПИ-регулятора выглядит следующим образом:

,

где KП – коэффициент пропорциональной части, КИ – коэффициент интегрирующей части, которые необходимо вычислить для построения регулятора в реальной системе регулирования давления.

Промоделируем систему с ПИ регулятором и возмущающими воздействиями.


Рис. Моделирование системы управления c возмущающими воздействиями и ПИ-регулятором в Simulink.

Вывод

По полученным результатам можно судить, что система быстро отрабатывает возмущение и возвращается в исходное устойчивое состояние с заданными показателями качества, поэтому синтез ПИ - регулятора проведён верно.


Список используемой литературы

1. Попкович Г. С., Гордеев М.А. Автоматизация системы водоснабжения и водоотведения. – М.: Высш. шк., 1986.

2.Певзнер Л. Д., Теория автоматического управления: Учеб. пособие. – М.: Высш. шк., 2006.

3. Певзнер Л. Д., Дмитриева В.В. Лабораторный практикум по дисциплине «Теория автоматического управления»: Учеб. пособие для студентов вузов. – М.: Изд-во МГГУ, 2007.

4. Рульнов А. А., Евстафьев К. Ю. Автоматизация систем водоснабжения и водоотведения. – М.: Инфра-М, 2010.

5. Жмаков Г. Н.. Эксплуатация оборудования и систем водоснабжения и водоотведения. – М.:Инфра-М, 2010.

6. Бородин И. Ф., Судник Ю. А.. Автоматизация технологических процессов. Учебник. – М.: КолосС, 2007.