Смекни!
smekni.com

Описание технологического процесса систем тепловодоснабжения (стр. 3 из 11)

5. Снижение расхода электроэнергии на единицу продукции.

И другие функции

1.6 Определение классов пожаро- и взрывоопасных зон

Расположение оборудования и коммуникаций ТОУ должны предусматривать их безопасное обслуживание и соблюдение требований действующих нормативных документов при эксплуатации. Общая компоновка проектируемой системы должна быть приведена в соответствие среды обслуживания к пожаро-взрывобезопасности и обеспечивать безопасные условия эксплуатации приборов и средств автоматизации. Оборудование должно безотказно работать в установленный межремонтный период. Технологическая схема объекта автоматизации должна быть составлена таким образом, чтобы он был разбит на зоны таким образом, чтобы была возможность воздействия на характеристики оборудования, и был обеспечен доступ человека к местам установки приборов, запорных устройств и регулирующих органов. Учет указанных условий окружающей среды поможет правильно выбрать приборы и средства автоматизации в проектируемой системе по исполнению, в результате чего будет спроектирована безопасная, надежная и экономически эффективная система учета электропотребления на ТЭЦ. Среда эксплуатации проектируемой системы характеризуется как: влажная, с выделением тепла и шума.

Таблица 2 Характеристика пожаро- взрывоопасных зон

Наименование производства, цеха, помещения Катего-рия пожаро-опас-ности Катего-рия взрыво-безопас-ности Категория взрыво-опасности Краткая характеристика помещения
Здание котельного отделения В-1 Не класс-сифи-цируется Не использу-ется Стены здания их железобетонных плит, частично из кирпича и щитов, из листового шифера мягкая кровля, отопление водяное, освещение электрическое, внутри пять котлов. Горючие материалы: газ, мазут, кабельная проводка

2 СПЕЦИАЛЬНАЯ ЧАСТЬ

2.1 Автоматизированные системы управления контроля и учета электроэнергии. Ввод устройства сбора данных в работу

Автоматические системы управления применяют на электростанциях и в системе энергоснабжения предприятий с большой потребляемой мощностью. Поступающая в ВМУ информация обрабатывается и используется для отключения и включения источников питания, регулирования нагрузок отдельных потребителей предприятия и выдачи о них соответствующих данных (мощности, энергии, напряжений и др.), автоматической регистрации основных параметров системы электроснабжения в эксплуатационном журнале, для предупреждающей и аварийной сигнализации. Основным достоинством вычислительных машин управления (ВМУ) перед системой с релейным управлением и защитой является большой объем выполняемой ими информации в сочетании с быстродействием, определяемым временем в несколько миллисекунд.

Система может применяться:

А) на промышленных предприятиях с присоединенной мощностью 750кВ∙А и выше, рассчитываемой за потребляемую электроэнергию по двухставочному и дифференцированному тарифу;

Б) на электростанциях и подстанциях при организации учета и выработки энергии:

В) на предприятиях Энергонадзора при организации сбора информации о выработке и потреблении электроэнергии и введении ограничений на электропотребление;

Г) на АСУ предприятий, объединений и отрасли.

Включение УСД в работу производится в следующей последовательности:

А) подать напряжение питания сети (220+22-33) В на УСД;

Б) при использовании счетчиков СИ-206 подать на них напряжение 12 В (24 В) согласно паспорту счетчика;

В) включить измерительные преобразователи с унифицированным сигналом постоянного тока.

Выключение УСД происходит в обратной последовательности.

После подачи напряжения питания на УСД по индикатору убедиться в прохождении тестов 1-9. При ошибочном завершении какого-либо теста, цифра с его номером периодически высвечивается на индикаторе. При правильном завершении всех тестов УСД начинает передавать информацию в систему энергоучета (периодическое высвечивание светодиодов «1» и «2») и на счетчике импульсов СИ-206. При обрыве линии связи с системой энергоучета светодиоды не светятся.

Перед включением УСД в работу необходимо его проверить. При проверке УСД должны производиться следующие операции:

1) внешний осмотр.

При этом должно быть установлено отсутствие механических повреждений, которые могут повлиять на его работу;

2) проверка сопротивления электрической изоляции.

Сопротивление изоляции измеряется мегомметром Ф4101;

3) опробирование.

Опробирование УСД производится путем самотестирования с помощью тестов 1-9;

4) определение основной приведенной погрешности УСД.

Для определения основной приведенной погрешности устанавливаем напряжение источника питания 64(12+1,2)В или (24+2,4-3,6)В, в зависимости от применяемого счетчика. Подаем питающее напряжение на УСД и убеждаемся в прохождении тестов.

Подготавливаем систему ИИСУЭЗ-64. Занести с пульта оператора системы массив констант, указанных в паспорте на конкретное УСД. На выход поверяемых контактов подать ток от источников калиброванного тока. Величина тока, подаваемого на каждый канал, указывается в паспорте на конкретное УСД для первой поверяемой точки. В момент отсутствия подачи данных УСД 9 неизменное состояние светодиодов «1» и «2» произвести запуск системы. Через три минуты записать показания итоговых канальных ячеек системы и сравнить полученные значения с расчетными значениями выходной величины, указанной в паспорте на УСД. Устанавливая последовательно входные токи каналов, соответствующие следующим поверяемым точкам, снимать и записывать через три минуты показания итоговых канальных ячеек системы.

Устанавливаем входные токи каналов, соответствующие наибольшему значению. В момент отсутствия передачи данных произвести запуск системы. Через тридцать минут записать показания счетчиков импульсов.

За основную приведенную погрешность УСД принимают разность между полученными результатами и расчетными значениями входной величины, отнесенную к нормирующему значению выходной величины.

Величина основной приведенной погрешности определяется по формуле:

, (1) [5]

где Ах – полученное значение выходной величины;

Ар – расчетное значение выходной величины;

Ан – нормирующее значение выходной величины.

УСД выдержал проверку, если величина основной погрешности не превышает ±1%.

УСД обеспечивает следующие виды расчетов:

1) расход сухого газа;

2) расход перегретого пара;

3) расход сухого насыщенного пара;

4) расход горячей воды (конденсата);

5) расход холодной воды;

6) расход тепловой энергии с паром и водой;

7) расход электрической энергии.

Для выполнения необходимого вида расчета заказчик заполняет карту заказа, в которой предоставляются предприятию – изготовителю исходные данные для изготовления УСД. На каждое УСД заполняется отдельная карта заказа.

2.2 Выбор средств автоматизации

Поступающая в энергетический котел 1 питательная вода подогревается в водяном экономайзере до температуры насыщения, поступает в барабан, где происходит сепарация пара из пароводяной смеси. Полученный пар направляется в паронагреватель и далее на турбину 2. Где происходит преобразование тепловой энергии пара в кинетическую энергию вращения турбины. Пройдя проточную часть турбины, часть пара поступает в коллектор для подогрева сетевой воды в бойлерах, а часть в конденсатор турбины 8, где охлаждается циркуляционной водой, транспортируемой из градирни 10. Из конденсатора турбины, конденсат конденсатным насосом 11 прокачиваются через подогреватели, деаэраторы и далее питательным насосом подается в экономайзер энергетических котлов.

Возможно, полная автоматизация работы котельной установки имеет очень большое значение для надежной и экономичной работы этой установки, а также электростанции в целом. Надежно работающая автоматика, немедленно реагируя на различные изменения, гораздо лучше поддерживает оптимальный режим работы оборудования, чем это может сделать обслуживающий персонал. Практика показала, что автоматизация установок при надлежащем ее выполнении значительно повышает среднегодовой КПД этих установок, а также надежность их работы.

Также автоматизация позволяет сократить оперативную загруженность персонала, связанную с выполнением однообразных действий по контролю и управлению, передав эти функции автоматике.

Теплоэнергетические установки, как объекты управления характеризуются следующими особенностями:

1) Значительные по амплитуде и длительные отклонения регулируемой величины от заданного значения не только ухудшают экономические показатели основного оборудования, но и также повышают вероятность его повреждения. Так повышение температуры перегрева пара выше заданного значения может привести к повреждению труб подогревателя.

2) Кратковременные, но значительные отклонения также могут привести к повреждению основного оборудования.

3) Незначительные, длительные и систематические отклонения регулируемой величины от заданного значения могут привести к ухудшению экономичности того или иного участка технологического процесса.

Автоматические устройства и приборы, реализующие функции управления должны выбираться по возможности в рамках Государственной Системы приборов с учетом сложности объекта, его пожаро-взрывоопасности, агрессивности и токсичности окружающей среды, вида измеряемого технологического параметра, расстояния от датчиков и исполнительных устройств до пунктов управления, требуемой точности и быстродействия, допустимой погрешности измерительных систем, место установки устройств, режима работы технологического оборудования и требований Правил установки электрооборудования. Предпочтение отдается однотипным централизованным и серийно выпускаемым устройствам, что упростит поставку и эксплуатацию системы управления.