Смекни!
smekni.com

Проектирование аппарата для очистки сточных вод от фенола и нефтепродуктов (стр. 4 из 14)

Образцы приготовленного таким путем материала были испытаны в процессе разложения фенола. Оценку эффективности работы биокатализатора осуществляли по изменению концентрации фенола в среде. Все измерения проводились при одинаковой степени аэрации среды и температуре. Они показали низкую активность (рис. 3).

Следующий метод иммобилизации основан на том, что при окислении FeII®FeIII в составе гидроксидных слоев двойного гидроксида Mg-Fe в матрице материала накапливается избыточный положительный заряд. При иммобилизации микроорганизмов избыточный положительный заряд матрицы компенсируется за счет присоединения отрицательно заряженных микробных клеток

:

Полученные таким путем образцы материала обладают повышенной активностью (рис. 3), которая примерно в 1,5 раза больше, чем у свободных клеток активного ила (рис. 4). Преимущество этого метода в том, что он позволяет проводить закрепление бактерий на гидроксиде уже после его отмывки от избыточной щелочи, избегая влияния высоких рН на жизнеспособность клеток.


Рис. 4. Интенсивность разложения фенола свободным активным илом и иммобилизованным сорбентом.

Таким образом, по результатам проведенных экспериментов биокатализа был выбран метод иммобилизации клеток двойными гидроксидами Mg-Fe, основанный на процессе окисления FeII®FeIII в составе гидроксидов, как наиболее перспективный. Полученные образцы иммобилизованного сорбента обладают довольно высокой активностью в процессе разложения фенола.

Перспективным направлением интенсификации процессов биологической очистки сточных вод, основанным на адсорбционной иммобилизации, является биосорбционный метод, осуществляемый путем добавления порошкообразного или гранулированного активированного угля в зону аэрации. Добавленный материал в данном случае выполняет двойную функцию: во первых, является носителем иммобилизованных микроорганизмов; во вторых, благодаря его большой сорбционной емкости, обеспечивается быстрая адсорбция токсичного субстрата.

Поскольку фенол является трудноокисляемым соединением, был предложен именно биосорбционный метод очистки, позволяющий снизить токсическое действие фенола на микроорганизмы и повысить скорость разложения нефтепродуктов.

Далее была проведена работа по использованию биосорбционного метода для иммобилизации фенол – разлагающих микроорганизмов.

Для иммобилизации фенол – разлагающих микроорганизмов использовали предварительно отмытый гранулированный активированный уголь марки БАУ-4. Этот материал, в отличие от двойных гидроксидов, обладает повышенной емкостью как по отношению к клеткам, так и к фенолу и нефтепродуктам. Иммобилизацию проводили адсорбционным методом, прокачивая концентрированную суспензию клеток через колонку с углем в течение 4,5 часов, поддерживая режим кипящего слоя. В данном случае, закрепление микроорганизмов осуществляется только за счет адсорбционных сил, без каких-либо дополнительных механизмов связывания.

2.2 Разработка лабораторной установки

Поскольку размеры частиц активированного угля не превышают 5 мм, а размеры гранул слоистых двойных гидроксидов лежат в пределах 0,1-1 мм, для реализации процесса был предложен аппарат с псевдоожиженным слоем.

Применение взвешенного (псевдоожиженного) слоя для биологической очистки сточных вод значительно меняет традиционную технологию. Установка с псевдоожиженным слоем песчаной загрузки «Окситрон», предназначенная для биологической очистки сточных вод с применением технического кислорода, разработана совместно фирмами «Эколотрон» и «Дорр-Оливер» (США) [4]. В настоящее время этот процесс получает широкое распространение в передовых зарубежных странах.

В установке со взвешенным слоем объединены преимущества аэротенков и биофильтров. Технологическая схема включает биореактор, в котором очищаемая сточная жидкость проходит снизу вверх со скоростью, достаточной для взвешивания загрузки, находящейся в реакторе. Как и в биофильтре, популяция микроорганизмов покрывает зерна загрузки. Частицы носителя обеспечивают значительную площадь поверхности для роста микроорганизмов активного ила. Процесс стабилен при залповых нагрузках и менее подвержен токсическому влиянию загрязнений сточных вод.

Концентрация биомассы в реакторе может составлять от 12 до 40 г/л, эффективность использования подаваемого кислорода составляет до 90%. Процесс не требует разделения иловой смеси, поскольку выходящая из загрузки жидкость содержит незначительное количество взвешенных веществ.

Физико-химические методы, такие как коагуляция, окисление озоном, сорбция на активированном угле, позволяют значительно снизить остаточное содержание органических веществ, однако эти методы требуют дорогостоящих реагентов и оборудования, а термическая регенерация активированных углей сложна и связана со значительными потерями сорбента, поэтому немалый интерес представляет возможность непрерывной регенерации активированного угля в процессе очистки биологическим методом.

Результаты исследований, выполненных во ВНИИ ВОДГЕО [4] на респирометре, показали, что присутствие активированного угля в системе с активным илом не приводит к увеличению скорости потребления кислорода. В то же время по полученным данным можно сделать предположение о наличии биологической регенерации активированного угля в присутствии микроорганизмов активного ила. Использование активированного угля (порошкообразного ила гранулированного) в системах с активным илом, как правило, способствует более стабильной работе сооружений биологической очистки и обеспечивает некоторое увеличение глубины очистки как по БПК, так и по ХПК. При этом окислительная мощность сооружений возрастает.

Существенное снижение концентрации органических загрязнений, СПАВ и цветности воды происходит в результате сорбции на уголь и биохимического окисления сорбированных веществ. Эффективность снижения ХПК составляет 40-70%, БПК — 85-95%, СПАВ — 95-100%, цветности —30-40%, что существенно превосходит соответствующие показатели аэротенка.

Опыт использования лабораторной установки в течение длительного времени подтвердил возможность биологической регенерации активированного угля в процессе очистки. Стабильная непрерывная работа установки без дополнительного введения активированного угля дает возможность предполагать, что система находилась в динамическом равновесии и в ней наблюдалась непрерывная регенерация активированного угля микроорганизмами активного ила. Возможность непрерывной биологической регенерации активированного угля непосредственно в биосорбере исключает необходимость его периодической замены или пополнения.

На рис. 5 представлена конструкция лабораторной установки (биосорбера) для очистки фенол-содержащих сточных вод.

Рис. 5. Лабораторная установка для очистки сточных вод от фенола.


Лабораторный биосорбер представляет собой полипропиленовую колонну диаметром 50 мм и высотой 200 мм, заполненную псевдоожиженным слоем сорбирующей загрузки (активированным углем или слоистым двойным гидроксидом железа-магния). Загрузочный материал насыпается на полиэтиленовую сетку, расположенную у дна аппарата и исключающую попадание частиц загрузки во входной трубопровод.

Для насыщения воды кислородом рядом с биосорбером предусмотрена аэрационная колонна диаметром 10 мм с аэратором типа «кольцевое сопло». Аэрационная колонна сообщается с биосорбером трубопроводом Dу=10 мм. Для предотвращения выноса частиц загрузки из аппарата в верхней части биосорбера предусмотрена сепарационная зона диаметром 100 мм и переливом высотой 20 мм. В крышке аппарата сделано отверстие для выхода отработанного воздуха.

Ниже уровня биосорбционной колонны располагаются приемная емкость и сборник чистой воды. В приемной емкости находится погружной центробежный насос, подающий воду в аэратор. Сборник и приемная емкость находятся в одном корпусе, разделенном перегородкой, не доходящей до верхнего края на 20 мм. Кроме того, в нижней части они сообщаются трубопроводом с краном рециркуляции. Это позволяет исключить неравномерность подачи и отвода жидкости, переполнение любой из емкостей, а также обеспечивает стабильность кипящего слоя и заданную кратность рециркуляции.

Установка работает следующим образом. Сточная вода подается в приемную емкость. Далее насосом она подается в аэрационную колонну, после чего поступает под псевдоожиженный слой сорбента. При контакте сточных вод с насадкой происходит очистка от фенола и других органических загрязнений в результате их адсорбции загрузочным материалом. На поверхности последнего образуются микрозоны с повышенной концентрацией органических веществ. При достаточной концентрации кислорода создаются благоприятные условия для развития микроорганизмов, осуществляющих биоокисление адсорбированных загрязнений, т. е. биорегенерацию сорбента. Избыточная масса микроорганизмов в виде взвеси потоком воды выносится из псевдоожиженного слоя в сепарационную зону и задерживается в ней, а очищенная вода собирается в лотках перелива и отводится из установки.

Данная установка позволяет проводить не только процесс очистки, но и иммобилизацию микроорганизмов в одном аппарате, без перемещения загрузки.

2.3 Отработка режимов иммобилизации и очистки

Для дальнейших исследований в качестве носителя для иммобилизации микроорганизмов был выбран активированный уголь, поскольку иммобилизованный сорбент на его основе обладает набольшей эффективностью по разложению фенола.