Смекни!
smekni.com

Проектирование аппарата для очистки сточных вод от фенола и нефтепродуктов (стр. 5 из 14)

Поскольку лабораторный биосорбер (рис. 5) позволяет проводить иммобилизацию микроорганизмов и дальнейшее использование полученного сорбента в одном аппарате, то процесс иммобилизации клеток проводился в режиме кипящего слоя путем прокачивания концентрированной суспензии клеток микроорганизмов через колонну с носителем.

Далее был проведен эксперимент по определению оптимального времени иммобилизации. Для этого производился отбор проб жидкости из сборника и определение ее оптической плотности на фотоэлектрокалориметре ФЭК-3. Поскольку содержание микроорганизмов в жидкости пропорционально ее оптической плотности (при условии, что для культивирования используются прозрачные среды), то для определения количества иммобилизованных клеток использовали наиболее простой турбидиметрический метод. Результаты эксперимента представлены на рис.6.


Как видно из графика, количество клеток в среде уменьшается, а количество иммобилизованных клеток, соответственно, увеличивается при проведении процесса до 4,5-5 часов. То есть за это время иммобилизация проходит полностью, и проведение процесса более длительное время нецелесообразно. Увеличение оптической плотности после 5 часов работы установки, по-видимому, связано с завершением адаптации микроорганизмов и началом их интенсивного размножения.

Отработка процесса очистки сточных вод с использованием биосорбента сводится к определению удельной скорости окисления загрязняющих веществ, так как этот технологический параметр необходим для нахождения количества биосорбента, необходимого для проведения очистки конкретных стоков, а, следовательно, и объема аппарата.

Эксперимент проводился следующим образом. Навеска активированного угля m=1.953 г. помещалась в биосорбционную колонну лабораторной установки. Далее проводили иммобилизацию клеток микроорганизмов путем прокачивания концентрированной суспензии клеток через установку в течении 5 часов. Отработанную культуральную жидкость сливали и колонну выдерживали 2 часа.

Затем установка заполнялась модельным стоком (водопроводная вода с добавлением фенола в концентрации 0,056 мг/л и отработанного минерального масла в концентрации 3 мг/л). Рабочий объем жидкости в установке – 2000 мл. Далее один раз в сутки производился отбор проб объемом 1 мл и пробы анализировались на содержание фенола и нефтепродуктов. Концентрацию фенола определяли по фотометрически с использованием реактива Фолина-Чокольтеу. Содержание нефтепродуктов определяли гравиметрически, путем экстракции CCl4.

Результаты экспериментов показали, что удельная скорость окисления фенола составляет 0,2 мг/(л*сут), а нефтепродуктов –4.9 мг/(л*сут).

Удельные массовые скорости окисления будут равны:

Эти параметры были в дальнейшем использованы для проектирования промышленного аппарата для очистки сточных вод.


3. Разработка технологической схемы очистки

В ходе эксплуатации лабораторной установки (см. раздел 2.2) было выявлено, что применяемая технологическая схема может быть применена и при проектировании промышленной установки очистки сточных вод.

Однако следует отметить, что для крупных промышленных аппаратов существенное влияние оказывают такие факторы, как структура потока, процессы массо- и теплообмена. Поэтому при проектировании необходимо учитывать все значимые факторы.

Ввиду низкой концентрации загрязняющих веществ в поступающей сточной воде прирост избыточной биомассы будет незначителен. Практически все новые клетки будут адсорбироваться на носителе, постепенно сменяя старые, отмершие клетки, которые десорбируются и уносятся потоком жидкости. Кроме того, температура поступающей сточной воды относительно стабильна, а из-за небольших концентраций загрязнений выделение физиологического тепла будет незначительным, поэтому процессы теплообмена при проектировании не учитываем.

Существенное влияние на процесс окисления фенола и нефтепродуктов оказывает концентрация растворенного кислорода. Поскольку при нормальных условиях эта величина не превышает 8-10 мг/л, то процесс растворения кислорода является лимитирующим, при отсутствии других замедляющих факторов.

Наиболее эффективные и экономичные эжекционные и струйные аэраторы, применяемые в аппаратах технологии очистки сточных вод не позволяют обеспечить захват необходимого количества воздуха, поэтому появляется необходимость установки нескольких аэраторов.

По этой причине при разработке технологической схемы было предложено использование не одного, а двух биосорбционных колонн, на каждой из которых будет установлен аэратор. Это позволит не только подать необходимое количество кислорода на очистку, но и снизит общее гидравлическое сопротивление установки, что существенно снизит энергетические затраты на перекачивание жидкости. Кроме того, использование двухступенчатой схемы очистки способствует пространственной сукцессии микроорганизмов, что значительно увеличивает степень деструкции различных органических соединений.

В биосорбере Iступени происходит наиболее активная утилизация легкодоступных для микроорганизмов веществ, биосорбер II ступени выполняет функции доочистки и разложения трудноокисляемых соединений.

Непрерывная биологическая регенерация активированного угля непосредственно в сооружении исключает необходимость его периодической замены или пополнения.

Ниже уровня биосорбера II ступени располагаются усреднитель и сборник чистой воды. Из усреднителя сточная вода непрерывно подается центробежным насосом в аэратор колонны I ступени, что обеспечивает стабильность псевдоожиженного слоя в обоих колоннах. Сборник и усреднитель находятся в одном корпусе, разделенном перегородкой, не доходящей до верхнего края. Эти емкости сообщаются между собой в нижней части трубопроводом с вентилем рециркуляции. Это позволяет исключить опорожнение усреднителя и переполнение сборника. Кроме того, при аварийном сбросе большого количества сточной воды, часть жидкости из усреднителя через перегородку будет перетекать в сборник и, таким образом, исключается переполнение усреднителя. Вентиль рециркуляции позволяет поддерживать постоянную степень рециркуляции при установившемся режиме на низких расходах сточной воды.

Установка работает следующим образом. Сточная вода подается в усреднитель. Далее насосом она подается в напорный аэратор I ступени типа «кольцевое сопло», после чего газожидкостная смесь поступает в нижнюю часть первого биосорбера. При контакте сточных вод с иммобилизованным сорбентом происходит очистка от фенола и других органических загрязнений. Далее жидкость отделяется от частиц сорбента и отработанного воздуха в сепарационном пространстве и самотеком поступает в аэратор II ступени типа шахтного водосброса. Пройдя через слой загрузки второй ступени, вода окончательно очищается и, отделившись от воздуха и частиц сорбента в сепарационном пространстве, самотеком поступает в сборник чистой воды. Из сборника очищенная вода может сбрасываться в природный водоем.

Установка может быть применена для очистки сточных вод с последующим их использованием в системах производственного водоснабжения, а также в системах локальной очистки сточных вод с целью создания замкнутых систем водоснабжения.

4. Расчет материальных потоков

Исходные данные:

Сточная вода

м3/сут
м3/с

Загрязняющие вещества:

фенол

НП (нефтепродукты)

ПДК (предельно допустимые концентрации), для водоемов рыбо-хозяйственного назначения:

Фенол – 0,001 мг/л

Нефтепродукты – 0,05 мг/л

Носитель:

Активированный уголь марки БАУ-4 плотностью

Насыпная плотность: r=650

Расчет:

1. Найдем расход воздуха

Так как концентрации загрязняющих веществ очень низки, принимаем La =300, La – БПКполн поступающих сточных вод;

Lt=3, Lt – БПКполн очищенных сточных вод.

Удельное количество воздуха, необходимое для окисления органических веществ рассчитываем по формуле:

При полной очистке (БПКполн <10) Z=1.1;

M=0.5 – коэффициент, учитывающий повышение степени использования кислорода;

K=7,88 – коэффициент, зависящий от глубины погружения; подбирается по высоте аппарата, K=7,88 при h=15.8 м – (см. главу 5);

tср= 16°C – средняя температура поступающих сточных вод;

;n=0.92 –коэффициент, учитывающий температуру сточной воды;