Смекни!
smekni.com

Проектирование аппарата, нагруженного внутренним и наружным давлением (стр. 1 из 5)

Задание на проектирование

№ п/п Наименование исходных данных Обозначение Единицы измерения Величина параметров
1 Внутренний диаметр аппарата Дв мм 1000
2 Высота обечайки Н мм 2000
3 Давление в аппарате Р МПа 0,8
4 Температуры среды в аппарате t oC 160
5 Среда - глицерин
6 Водный раствор - % 20
7 Плотность среды r кг/м3 1050
8 Вид днища - коническое, α=450
9 Диаметр выходного штуцера Д0 мм 50
10 Давление в рубашке аппарата Рруб МПа 0,2
11 Потребляемая мощность мешалки Nм кВт 7,6
12 Угловая скорость мешалки nN об/мин 240
13 Срок эксплуатации t год 20

Рассчитать основные элементы корпуса аппарата: обечайка, днище, крышка, мотор-редуктор, фланец, патрубок, перемешивающее устройство, штуцер, технологическое отверстие, рубашка, уплотнение, материал аппарата, опоры аппарата.


Введение

Развитие химической и нефтехимической промышленности требует создания новых высокоэффективных, надежных и безопасных в эксплуатации технологических аппаратов. Применение веществ, обладающих взрывоопасными и вредными свойствами, ведение технологических процессов под большим избыточным давлением и при высокой температуре обусловливает необходимость детальной проработки вопросов, связанных с выбором средств защита для обслуживающего персонала, с прочностью и надежностью узлов и деталей аппаратов. Перед химическим машиностроением поставлена задача создания и выпуска высокопроизводительного оборудования. Химическое машиностроение должно внести большой вклад в развитие топливно-энергетического комплекса нашего государства.

Темой проекта является проектирование аппарата, нагруженного внутренним и наружным давлением, и привода для механического перемешивающего устройства аппарата. В ходе проектирования производился расчет основных элементов аппарата в соответствии с рис. 1, находящихся под внутренним и наружным давлением с заданной рабочей средой и температурой.

Рис. 1. Кинематическая схема привода: 1-электродвигатель (асинхронный); 2-муфта (упругая); 3-одноступенчатый косозубый редуктор; 4-аппарат с мешалкой.


К перемешивающему устройству подбирался привод, для которого выполнялся кинематический, энергетический и силовой расчеты. Определялись основные размеры деталей передачи из условий прочности и жесткости, а также подбирались подшипники и муфты.


1. Основная часть

1.1 Расчет оболочек нагруженных внутренним и внешним давлением

Во многих технологических процессах применяют емкостные аппараты с мешалки, которые работают под давлением в соответствии с рис. 1.1.

Рис. 1.1. Аппарат с мешалкой и её приводом: 1-электродвигатель; 2-редуктор; 3-муфта; 4-уплотнение; 5-стойка; 6-крышка; 7-фланцы; 8-обечайка; 9-днище; 10-мешалка; 11-рубашка; 12-днище рубашки; 13-опоры. Штуцеры: А - вход продукта; Б - люк; В - вход теплоносителя; Г - выход теплоносителя; Д - выход продукта.

Основным элементом аппарата является его цилиндрическая часть - обечайка 8. Вертикальное исполнение тонкостных цилиндрических аппаратов более выгодно, чем горизонтальное (в горизонтальных аппаратах появляются дополнительные изгибающие напряжения от силы тяжести самого аппарата и среды). Вертикальная обечайка закрывается днищем 9 снизу и крышкой сверху. В отличие от днищ, имеющих неразъемное соединение, крышки 6 являются отъемными частями, аппаратов. Днища и крышки изготавливают из тех же материалов, что я обечайки. Присоединение к аппаратам крышек и соединение отдельных частей аппарата осуществляется с помощью фланцев 7. Герметичность фланцевых соединений обеспечивается прокладками. Трубопроводы и контрольно-измерительные приборы присоединяются к аппаратам с помощью штуцеров, чаще фланцевых, реже резьбовых. Для осмотра аппарата, загрузки сырья и очистки аппарата, а также для сборки и разборки внутренних устройств служат люки Б. При съемных крышках аппараты могут быть без люков. Аппараты устанавливаются на фундаменте с помощью лап и опор 13. Перемешивание жидких сред в аппаратах производится либо механическими, либо пневматическими способами. Механическое перемешивание осуществляется мешалками 10. Для приведения во вращение механического перемешивающего устройства служит привод, состоящий из электродвигателя 1, редуктора 2 и муфт 3. Устанавливается редуктор на крышке вертикального аппарата с помощью стойки и опоры 5. Вал перемешивающего устройства вводится в аппарат через уплотнение 4, обеспечивающее герметичность. Уплотнение вала производится с помощью сальника, либо торцевым уплотнением. Жидкость вводится в аппарат через штуцер А, а выводится через штуцер Д. Обогрев аппарата осуществляется обычно с помощью рубашки 11, которую приваривают к корпусу стального аппарата. Диаметр рубашки принимают на 40-100мм больше диаметра аппарата. Обогревающую жидкость подают в рубашку через нижний, штуцер Г, а удаляют через верхний В, чтобы рубашка всегда была заполнена теплоагентом. Обогревающий пар подают в рубашку через верхний штуцер, а через нижний отводят конденсат.

В соответствии с правилами /1/ материалы, применяемые для изготовления аппаратов, должны обладать хорошей свариваемостью, а также прочностью и пластическими характеристиками, обеспечивающими хорошую работу аппарата в заданных условиях эксплуатации.

Элементы корпуса рассчитываются по двум вариантам: от действия внутреннего давления P(в) и наружного давления P(н).

1.1.1 Прибавки к толщине элементов корпуса на коррозию. Выбор материала для обечайки, днища и крышки

Для изготовления химических аппаратов обычно используют, стали различных марок. При выборе материалов корпуса, рубашки, штуцеров учитываем их коррозионную стойкость в рабочей среде (в глицерин), которую принимаем по /2/ и /3/.

По коррозионной стойкости подходят 5 сталей: 15ХSМ, Х5М, Х18H10T, Х17Н13М2Т, OX23H28MЗДТ, и алюминий (ГОСТ 4785-65).

Рассчитаем скорость проникновения коррозии по формуле (1.1) по /4/:

П=

(1.1)

где П - скорость проникновения коррозии (глубинный показатель), мм/год;

- показатель убыли массы при равномерной коррозии стали, г/(м2∙ч)(по /4/ принимаем
=0,2г/(м2∙ч);
- плотность стали (по /5/ принимаем
=7,96 г/см3).

П=

=0,22мм/год - по формуле (1.1).

Отсюда, из условия коррозионной стойкости по /2/ выбираем материал обечайки, днища и крышки – сталь Х18H10Tсо скоростью проникновения коррозии

П<0.1*10-3м/год.


Для выбранного материала прибавку к расчетной толщине стенки элементов корпуса на коррозию определяем по формуле (1.2):

С=П·Та (1.2)

где С - прибавка к расчетной толщине стенки элементов корпуса на коррозию, мм; Та - амортизационный срок (Ta=10лет).

С=П·Та=0,1∙10-3·20=2∙10-3м – по формуле (1.2).

Материалы, у которых С>(2÷3)×10-3м обычно не используют по /2/. Поправка С находится в пределах допустимых величин, т. к. С=2,0×10-3м<CK=3мм, по /3/.

1.1.2 Определение расчетных значений давлений, температур, допускаемых напряжений и модуля упругости применяемых материалов

Расчетное давление принимаем равным рабочему давлению. Рабочее давление в аппарате - максимальное избыточное давление, возникающее при нормальном протекании рабочего процесса.

Рабочее внутреннее давление для элементов корпуса, находящихся ниже свободной поверхности жидкости определяем по формуле (1.3):

P(в)=P+Pгидр(1.3)

где P(в) - рабочее внутренне давление, МПа; Р - избыточное внутреннее давление в аппарате над свободной поверхностью жидкости, P=0,8МПа; Pгидр - гидростатическое давление рабочей жидкости (глицерин), МПа.

Гидростатическое давление Pгидр вычисляем по формуле (1.4):

Pгидр=10ρж·x (1.4)


где ρж - плотность рабочей жидкости (глицерин:ρж=1050кг/м3); х - расстояние от свободной поверхности жидкости до нижней точки днища аппарата, мм.

При заполнении на 0,75 (75%) высоты обечайки найдём x по формуле (1.5):

x=H∙0,75 (1.5)

где H– высота обечайки, мм.

x =2000·0,75=1500мм=1.5м– по формуле (1.5).

Pгидр=10·1050∙1500∙10-9=0,01575 МПа=15,8∙10-3МПа - по формуле (1.4).

Pгидр при определении расчетного давления учитываем в том случае, когда его величина составляет 5% и более от рабочего давления по формуле (1.6):

или 5% (1.6)

=1,97% <5% - по формуле (1.6).