2.5 Построение годографов скоростей и ускорений центра масс шатуна
mv= 0,177 м/с/мм ; mа = 31,6 м/с2/мм.
2.6 Построение диаграммы перемещений Sв поршня, Sв = ò1(j)
Принимаем: l = 250 мм, 2p = 3600;
mj =2p/l = 2 * 3,14/250 = 0,0251 рад/мм
mj=360/l = 360/250 = 1,44 град/мм.
j = mjx;t = mtx;j = wt.; mjx= wt; mjx = wmtx ;
mt = mj/w = 0,0251/177,9 = 0,000141 с/мм.
mt = Т/l.
где, Т – время одного полного оборота кривошипа.
Т = 60/n = 60/1700 = 0,035 с.
mt = 0,035/250 = 0,000141 с/мм.
Принимаем величину наибольшей ординаты (6S6) = 114 мм, тогда
ms= Sв6/(6Sв) = 0,14/114 = 0,00122 м/мм.
Величину любой ординаты iSi, где i – номер деления, находим по формуле:
(iSi) = SBi/ms.
2.6.1. Построение кинематической диаграммы VВ = ò2(j) : (ро) = KV = 40 мм.
Определяем масштаб mv скоростей, приняв KV = 40 мм.
mv = ms/mt* KV = 0,00122/0,000141 * 40 = 0,216 м/с/мм.
2.6.2. Построение кинематической диаграммы ав = ò3(j) производится графическим дифференцированием диаграммы Vв = ò2(j).
(pо) = Ка = 10мм.
Определяем масштаб mа = mv/mt* Kа = 0,216/0,000141 * 10 = 12,47 м/с2мм.
3.Усилия, действующие на поршень
3.1 Построение индикаторной диаграммы рабочего процесса
3.1.1. Индикаторная диаграмма зависимости давления газов на поршень от перемещения поршня строим по диаграмме в задании.
3.1.2. В рассматриваемом примере наибольший ход поршня SБ = 0,14 м, а наименьшее давление газов: Рz= 4,8 н/мм2. Учитывая это, принимаем: mS = 0,001 м/мм,mр = 0,02 н/мм2/мм.
3.2 Построение диаграмм, действующих на поршень : Fun = ò5(j) ; FВ = ò4(j) ; F = ò6(j)
3.2.1. Для построения этих диаграмм составим таблицу 3.
Рu = Ра – 0,1 м/мм2 .
Сила Fв давления газов на поршень: Fв = Рu* Аn , где, Аn – площадь поршня в мм2.
Аn = pd2/4 = 3,14 * 1202/4 = 11304 мм2.
Сила инерции шатуна Fun по формуле: Fun = - mn* ав н.
где, mn – масса поршня кг,
ав – ускорение поршня м/с2.
Fun = - 2,5 * ав н.
Результирующая сила F, действующая на поршень: F = Fв + Funн.
4.Результирующая сила инерции шатуна.
4.1Результирующая сила инерции шатуна для 10 положения коленвала (j = 3000)
4.1.1.Результирующую силу инерции шатуна определим способом переноса этой силы на величину h плеча момента сил инерции:
Fuш = - mш * аsш, Н ,
где mш = 4,7 кг - масса шатуна,
аsш = 1580 м/с2 - ускорение центра масс шатуна (для 10 - го положения).
Знак минус означает, что направление силы инерции противоположно направлению ускорения.
4.1.2. Шатун совершает сложное движение. Поэтому аsш мы рассматриваем как сумму двух ускорений: аsш = ас + аsшс ,
где, ас – ускорение центра масс шатуна в переносном ( поступательном) движение вместе с точкой С:
аsшс – ускорение центра масс шатуна в относительном ( вращательном ) движении вокруг точки С.
Fuш = -mш (ас + аsшс ) = [-mшm а (pс)] + [-mшm а (сSш)],
-mшm а (pс) = - Fuш’, -mшm а (сSш) = - Fuш’’,
Fuш = Fuш’ + Fuш’’,
Fuш’ – сила инерции, возникающая при переносном движении шатуна. Fuш’ приложена в центре масс.
Fuш’’ – сила инерции, возникающая при относительном движении шатуна. Fuш’’ приложена в центре качания.
4.1.3. Fuш’ = - mш * ас = -4,7 * 2384,64 = - 11,207 н.
Fuш’’ = - mш * аsшс = -4,7 * 587 = 2758,9 н.
Положение центра качания определяется:
Lск = LcSш + Jш/ mш * LcSш = 0,075 + 0,0294/4,7 * 0,075 = 0,159 м.
После геометрического сложения Fuш’ и Fuш’’ получаем
Fuш = - mш * аsш = - 4,7 *1580 = - 7426 н.
Lстш = mL* (стш) = 0,002 * 26 = 0,052 м.
Определяем угловое ускорение шатуна:
Eш = а всt/ Lвс =-1928/0,25 = - 7712 рад/с2.
Тиш = - Jш* Еш = -0,294 * (-7712) = 226 нм.
Силу Fuш и момент Тuш заменяем одной равнодействующей силой Fuш, смещённой параллельно самой себе на расстояние h.
h = Тuш /Fuш = 226/7426 = 0,03 м = 30 мм.
5.Силовое исследование механизмов
5.1Силовое исследование групп поршень – шатун для рабочего хода (10 – ое положение коленвала)
5.1.1.Силовое исследование производим для каждой структурной группы отдельно. К звеньям группы поршень – шатун приложены следующие внешние силы:
К звену 4 – поршень – сила F4 в точке В.
F4 = Fв + Fun + Gn,
где Fв – сила давления газов на поршень. Fв = 226н.
Fun – сила инерции поршня. Fun = - mn* ав = -2,5 * 790 = -1975 н.
G – вес поршня,
Gn = mn*g = 2,5 * 9,8 = 24,5 н.
F4 = 226 - 1975 + 24,5 = -1724,5 н.
Сила направлена вверх к звену 3 – шатуна – сила Gш в точке Sш и сила Fсил – в точке Тш.
Gш = mш*g = 4,7 * 9,8 = 46,06 н.
Fuш = -7426 н.
5.1.2.Кроме внешних сил на звенья действуют ещё реакции в кинематических парах. На звено 4(поршень) – реакция R14 со стороны звена 1(цилиндр, для этой реакции известна только её линия действия (прямая аа, перпендикулярная оси цилиндра), величина и точка приложения неизвестны.
На звено 4 действует также со стороны звена 3(шатун) реакция R34, приложенная в точке В, величина и направления её неизвестны. На звено 3 действует со стороны звена 4 реакция R43, приложенная в точке В, равная по величине реакции R34 и противоположно ей направленная.
R34 = - R43.
В точке С на звено 3 действует реакция R23 со стороны звена 2 (кривошипа). Величина и направления её неизвестны. Поэтому из С проводим в произвольном направлении вектор реакции R23, раскладывая её на две взаимно перпендикулярные составляющие: R23n и R23t.
R23 = R23n + R23t.
5.1.3. Величину R23t определяем из уравнения равновесия момента:
Tв (Gш) + Tв (Fсил) + Tв (R23t) = 0.
Учитывая направление сил Gш и Fсил и условно
R23t, то: Gшh2 – Fсилh1 + R23t*l = 0
R23t = (Fuшh1 - Gшh2)/l = (7426 * 0,026 – 46,06 * 0,052)/0,25 = 2608 н.
h1 = 0,026 м ; h2 = 0,052 м.
5.1.4. Для определения результирующей R23nи R14 составляем уравнение равновесия всех сил, действующих на группу:
R14 +F4 + Gш + Fuш + R23t+ R23n = 0;
R23 = mF (се) = 40 * 57 = 2280 н.
R14 = mF (еа) = 40 * 71 = 2840 н.
R43 = -R43 = mF (ев) = 40 * 21 = 840 н.
5.2. Силовое исследование группы начального звена для положения рабочего хода (10-ое положение коленвала)
5.2.1. Строим расчетную схему группы начального звена.
К начальному звену приложены силы: в точке С – R32 = 2280 н.
В точке Sк вес Gк = mк*q = 10,5 * 9,8 = 102,9н.
Тут же сила инерции кривошипа Fик направленные к точкам С:
Fик = - mк* аsк = -10,5 * 587 = -5870 н.
5.2.2. Уравновешивающий момент Ту – момент сил сопротивления. Направление Ту по часовой стрелке – всасывание.
5.2.3. Уравнение равновесия моментов относительно оси О вращения кривошипного вала всех сил, действующих на начальное звено:
То(R32) + То (Gr) + То(Fuк) + То(R12) + Ту = 0.
Моменты сил инерции Fик и FикVII кривошипов и реакции R12 стойки на кривошип равны нулю, т.к. линии действия этих сил проходят через ось вала О.
- R32h1 – R52he + Tу = 0, Tу = R32h1 + R52h2.
Измеряя длины отрезков на чертеже и учитывая масштаб чертежа: h1 = 0,064 м ; h2 = 0,054м.
Ту = 2280 * 0,064 + 3480 * 0,054 = 332 мм.
5.2.4. Если вращательное движение передаётся при помощи зубчатой передачи, то Ту создаётся уравновешивающей силой Fу , величину которой надо определить.
После чего можно определить реакцию R12.
Fу = Ту/h3 = 332/ 0,092 = 3608 н.
5.2.5. Векторное уравнение равновесия сил, действующих на начальное звено:
Gк + Fик + R32 + GкVII + FикVII + R52 + R12 + Fу = 0; R12 = mF (la).
5.3 Определение уравновешивающей силы Fу способом рычага Жуковского (10-ое положение коленвала)
5.3.1. Строим в масштабе mL = 0,001 м/мм кинематическую схему исследуемого двухцилиндрового двигателя, к звеньям которого приложены силы :
в точке В – сила F4 = -1724,5 н.
в точке Sk – вес кривошипа Gk = 102,9 н и сила инерции Fик = 5870 н.
в точке Sш – вес шатуна Gш = 46,06 н.
в точке Тш – сила инерции шатуна Fuш = -7426 н.
5.3.2. В рассматриваемом положении - j = 3000 (такт всасывания) в первом цилиндре, сжатие во 2ом двигатель не отдаёт, а получает энергию. Поэтому линия действия и направление силы Fу – будет линия зацепления N’’N’’, а направление по направлению скорости точки N’’.