Запишем выражение для числа зубьев шестерни
(1.46)где z3 - число зубьев шестерни.
Подставляя численные значения в выражение (1.46), получим
Сделаем проверочный расчет зубьев шестерни на подрезание. Условие работоспособности передачи без подрезания можно записать в виде [2, с.38]
z3 ³zmin, (1.47)
где zmin - минимальное число зубьев. Для прямозубых зубчатых колес zmin=17.
Минимальное число зубьев оказалось меньше, чем действительное, следовательно, подрезания не произойдет.
Определим делительный диаметр шестерни по формуле
d3= z3·mт. (1.48)
Подставляя численные значения в выражение (1.48), получим
d3= 40·4=160 мм.
Зная делительный диаметр, можно найти диаметр вершин шестерни по формуле
da3 = d3+2·mт, (1.49)
где da3 - диаметр вершин шестерни, мм.
Подставляем численные значения
da3=160 +2·4= 168 мм.
Зная делительный диаметр, можно найти диаметр впадин шестерни по формуле
df3=d3 - 2,5·mт, (1.50)
где df3 - диаметр впадин шестерни, мм.
Подставляем численные значения
df3 = 160 - 2,5·4 = 150 мм.
В ходе расчета были получены следующие результаты: модуль тихоходной передачи mт=4, ширина шестерни bw3=79 мм, делительный диаметр шестерни d3=160 мм, диаметр вершин шестерни da3=168 мм, диаметр впадин шестерни df3=150 мм.
Задачей раздела является предварительное определение минимального диаметра промежуточного вала. Считаем, что вал - гладкий, круглый стержень, испытывающий только постоянное напряжение кручения. Критерием расчета является статическая прочность при кручении.
Определим диаметр выходного конца вала
(1.51)где dВ3 - диаметр выходного конца вала, мм; [tк] - допускаемое напряжение на кручение, Н/мм2. Выбираем [tк] =20 Н/мм2.
Подставляем численные значения в формулу (1.51)
Выбираем из стандартного ряда значение dВ=60мм.
Диаметр вала под подшипник вычисляется по формуле
dП=dВ3+5 мм, (1.52)
Подставляя численные значения в выражение (1.52), находим диаметр вала под подшипник
dП= 60+5=65 мм.
Выбираем dП=65 мм.
Диаметр бурта: dб= dП+5=65+5=70 мм
Диаметр вала под колесо можно вычислить по формуле
dВ2= dб-3 мм, (1.53)
Подставляя численные значения в выражение (1.53), находим диаметр вала под колесо
dВ2= 70-3=67 мм.
Выбираем из стандартного ряда значение dВ2=65 мм.
Т.к. dВ2>bω2, то lст= bω2+11,5=37+11,5=48,5 мм
В ходе вычислений были получены следующие результаты: диаметр выходного конца вала dВ3 =60 мм, диаметр вала под подшипник dП=65 мм, Диаметр вала под колесо dВ2=67 мм., диаметр бурта dб=70 мм, длина ступицы lст=48,5 мм.
Задачей раздела является выбор стандартных подшипников качения и их проверка на долговечность по динамической грузоподъемности. Критерием выбора является: а) диаметр вала, на который установлен подшипник; б) направления, воспринимаемых подшипником нагрузок; в) стоимость подшипников и их монтажа. Так как на промежуточном валу находится колесо косозубой передачи, то подшипники должны выдерживать как радиальные, так и осевые нагрузки, поэтому выбираем радиально-упорные шарикоподшипники (с учетом стоимости монтажа), назначаем лёгкую серию. Выбираем подшипник № 36210 по ГОСТ 831-75.
Проверим выбранный подшипник на долговечность. Для определения реакций в подшипниках составим общую силовую схему узла привода (рис.1.2).
Рис.1.2.
Найдем все внешние силы
(1.54) (1.55) (1.56) (1.57) (1.58)Подставив численные значения в выражения (1.54), (1.55), (1.56), (1.57), (1.58) и вычислим численные значения внешних сил
НДля определения радиальных сил, действующих на подшипник качения, составим схему вала.
Схема вала
Рис.1.3 Значения l1, l2 и l3 определяются при конструировании: l1=40 мм, l2=47,5 мм, l3=47,5 мм.
Составим уравнения моментов в вертикальной плоскости y0zотносительно точки A -
(1.59) Выражаем, а затем вычисляем RByиз выражения (1.59) . Составим уравнения моментов в горизонтальной плоскости x0zотносительно точки A (1.60) Выразим RBxиз выражения (1.79) и вычислим его Составим уравнения моментов в вертикальной плоскости y0zотносительно точки B: (1.61) Составим уравнение моментов в горизонтальной плоскости x0zотносительно точки B (1.62) Выразим RAyиз выражения (1.62) и вычислим его Вычислим полную реакцию в каждом подшипнике по формуле (1.63) В подшипнике A: В подшипнике B: Определим расчетный ресурс выбранного подшипника качения № 36210 ГОСТ 831-75 Вид разрушения - усталостное выкрашивание. Критерий расчета контактная выносливость Ресурс подшипника вычисляется по формуле (1.64) где C - динамическая грузоподъемность, Н; RE - эквивалентная нагрузка, Н; m - показатель кривой выносливости.Для шариковых подшипников m=3. Динамическая грузоподъемность для подшипников качения № 36210 по ГОСТ 831-75 C= 43200 Н.
Эквивалентная нагрузка вычисляется по формуле
(1.65),где Xи Y - коэффициенты радиальной и осевой нагрузок соответственно; Rrи Ra - радиальная и осевая нагрузки подшипника, H; V - коэффициент вращения; Ks - коэффициент безопасности; KT - температурный коэффициент.
Так как температура в редукторе t<125°, выбираем KT=1. При вращении внутреннего кольца подшипника относительно вектора силы выбираем V=1. В соответствии с рекомендациями выбираем Ks=1,3. Коэффициенты Xи Yопределим для угла a=12°, для этого следует определить и сравнить для опоры Aи опоры Bследующее отношение
= e, (1.66)где e - параметр осевого нагружения, e=0,32.
Осевая сила для радиально-упорных шариковых подшипников вычисляется по формуле
Si=e·Rri. (1.67)
Вычислим численное значение осевой силы в подшипнике A
SA= 0,32·10798,6= 3455,6 Н.
Вычислим численное значение осевой силы в подшипнике B
SB=0,32·3030 = 969,5 Н.
Так как направление осевых сил А и SAне совпадают, находим равнодействующую осевых сил
H= SA - Fа2 - SB, (1.68)
где H - равнодействующая осевых сил, Н. Подставим численные значения в формулу (1.68) и определим численное значение равнодействующей осевых сил
H= 3455,6 - 1172 - 969,5 = 1318,1H.
Так как равнодействующая осевых сил H>0 находим осевые нагрузки по следующим формулам
RaA=SA, (1.69)
RaB=RaA - Fa2 (1.70)
Определим численные значения осевых сил в подшипниках
RaA= 3455,6 H
RaB=3455,6 - 1172 = 2283,6 H.
Подставляем численные значения осевых нагрузок в (1.66) и сравниваем полученное отношение с eдля подшипника A
Подставляем численные значения осевых нагрузок в (1.66) и сравниваем полученное отношение с eдля подшипника B