Решим систему из двух линейных уравнений :
В результате получим и решим квадратное уравнение:
В итоге получаем :
;Сделаем проверку :
Найдём передаточную функцию разомкнутой системы исходя из передаточных функций её звеньев и структурной схемы нескорректированной системы ( рис.2) ;
Подставим в выражение численные значения коэффициентов и получим следующее :
2. Оценка точности и анализ качества исходной системы
Приведём систему к единичной обратной связи , тогда структурная схема нескорректированной системы приведённой к единичной обратной связи будет иметь вид:
Тогда передаточная функция замкнутой системы принимает вид:
Найдём ошибку системы , величина которой равна
Ошибка по входу будет равна :
Ошибка по возмущению будет равна :
Общая ошибка будет равна :
Далее для оценки свойств системы воспользуемся пакетом прикладных программ
ControlSystemToolbox математического пакета MatLab.
Занесём в tf-форме передаточную функцию разомкнутой исходной системы в MatLab , обозначив её через Wr , для этого сначала введём передаточные функции звеньев и найдём их произведение :
>> w1=tf([78],[0.0016,1])
Transfer function:
78
------------
0.0016 s + 1
>> w2=tf([1],[0.3985,1])
Transfer function:
1
------------
0.3985 s + 1
>> w3=tf([1],[0.01,1])
Transfer function:
1
----------
0.01 s + 1
>> w4=tf([1],[0.7,1])
Transfer function:
1
---------
0.7 s + 1
>> Wr=w1*w2*w3*w4
Transfer function:
78
-------------------------------------------------------
4.463e-006 s^4 + 0.003253 s^3 + 0.2917 s^2 + 1.11 s + 1
Далее строим логарифмические амплитудные характеристики :
>> margin(Wr);gridon
Для определения устойчивости замкнутой системы автоматического управления построим годограф Найквиста от разомкнутой системы с помощью средств MatLab.(рис.5)
>> nyquist(Wr);grid on
Точка с координатами (0;-j) охватывается годографом, следовательно исходная система не устойчива.
Чтобы оценить время переходного процесса и относительное перерегулирование , введём в нашу модель единичную обратную связь и построим график переходного процесса замкнутой исходной системы (рис.6)
>> f=tf([1])
Transfer function:
1
>> W=feedback(Wr,f)
Transfer function:
78
--------------------------------------------------------
4.463e-006 s^4 + 0.003253 s^3 + 0.2917 s^2 + 1.11 s + 79
>> step(W);grid on
Из графика (рис.6) видно , что время перехода равно 15 секунд , подобная скорость переходного процесса приемлема , но не желательна .
Относительное перерегулирование составляет приблизительно
, что является слишком большим значением и превышает допустимое по условию задания (σ =5 %).Оценив характеристики исходной системы , делаем вывод о том , что система требует доработки в виде дополнительного корректирующего устройства (регулятора)
5. Построение логарифмических амплитудно-частотных характеристик для исходной системы, желаемой и корректирующего звена .
Для построения ЛАЧХ используется стандартная сетка ,. По оси абсцисс откладывается угловая скорость в логарифмическом масштабе , т.е. наносятся отметки , соответствующие
, а около отметок пишется само значение частоты в рад/с . Выбираем длину , равную 50мм . По оси ординат откладывается модуль в дБ.Построим для нашей исходной системы так называемую асимптотическую ЛАЧХ ( см. приложение), представляющую собой совокупность отрезков прямых линий снаклонами , кратными величине 20 дБ/дек, а точки перегибов соответствуют десятичным логарифмам частот , равных величинам , обратным постоянным времени из передаточной функции.
Для построения исходной ЛАЧХ будем использовать передаточную функцию
; ;Начальный уровень исходной ЛАЧХ будет равен :
Для построения желаемой ЛАЧХ необходимо найти желаемый передаточный коэффициент:
;Из построенной желаемой ЛАЧХ определяем передаточную функцию разомкнутой желаемой системы :
,Для построения ЛАЧХ корректирующего звена вычтем из желаемой ЛАЧХ исходную.
Передаточная функция регулятора имеет вид (см. приложение):
, гдегде
, ; (см. приложение)Произведём оценку точности и анализ качества скорректированной системы с помощью математического пакета МatLab.
>> g1=tf([49],[1,0])
Transfer function:
49
--
s
>> g2=tf([1],[0.01,1])
Transfer function:
1
----------
0.01 s + 1
>> g3=tf([1],[0.0016,1])
Transfer function:
1
------------
0.0016 s + 1
>> Gr=g1*g2*g3*g3
Transfer function:
49
-----------------------------------------------
2.56e-008 s^4 + 3.456e-005 s^3 + 0.0132 s^2 + s
>> margin(Gr);gridon
Запас по амплитуде увеличился почти в 9 раз и теперь составляет 17,3 дБ , запас по амплитуде составляет 57,8 градуса .
Введём в систему отрицательную обратную связь и оценим переходный процесс.
>> f=tf([1])
Transfer function:
1
>> G=feedback(Gr,f)
Transfer function:
----------------------------------------------------
2.56e-008 s^4 + 3.456e-005 s^3 + 0.0132 s^2 + s + 49
>> step(G);grid on
Из графика (рис.8)видно , что время перехода равно 0,15 секунды , а перерегулирование составляет примерно
% , что не превышает заданных 5 %.Проверим систему на устойчивость при помощи построения годографа Найквиста :
>> nyquist(Gr);grid on
Оценив характеристики скорректированной системы , делаем вывод :
сходящийся колебательный процесс (рис.8) и годограф Найквиста (рис.9) , не охватывающий точку (0,-j) свидетельствуют об устойчивости системы.
4. Синтез последовательного корректирующего звена
Структурная схема САУ при последовательной коррекции изображена на рис.10, где приняты следующие обозначения : W(s)-передаточная функция исходной системы ;
Wk(s)- передаточная функция корректирующего устройства .
Полагая , что передаточная функция скорректированной системы Wск(s) равна желаемой передаточной функции Wж(s) , можно записать
Реализация аналогового регулятора на пассивных RC-цепях.
Передаточная функция корректирующего звена имеет вид:
Т.к.
, то данная ПФ может быть реализована при помощи схемы , изображённой на рис.11.Произведём расчёт сопротивлений и ёмкости , а так же коэффициента усиления дополнительного усилителя . Расчёт устройства производится по соотношениям :
;Пусть ёмкость конденсатора равна 10 мкФ ( модель К15П-1)
По таблице номиналов выбираем близкие по значению резисторы модели С1-1 R1=39кОм , R2=160Ом
Чтобы сделать коэффициент регулятора равным 2,02 , подберём коэффициент усиления дополнительного усилителя Куд=112.