Смекни!
smekni.com

Система автоматического регулирования давления в ресивере (стр. 2 из 3)

Решим систему из двух линейных уравнений :


В результате получим и решим квадратное уравнение:

В итоге получаем :

;

Сделаем проверку :

Найдём передаточную функцию разомкнутой системы исходя из передаточных функций её звеньев и структурной схемы нескорректированной системы ( рис.2) ;

Подставим в выражение численные значения коэффициентов и получим следующее :


2. Оценка точности и анализ качества исходной системы

Приведём систему к единичной обратной связи , тогда структурная схема нескорректированной системы приведённой к единичной обратной связи будет иметь вид:

Тогда передаточная функция замкнутой системы принимает вид:

Найдём ошибку системы , величина которой равна

Ошибка по входу будет равна :

Ошибка по возмущению будет равна :

Общая ошибка будет равна :

Далее для оценки свойств системы воспользуемся пакетом прикладных программ

ControlSystemToolbox математического пакета MatLab.

Занесём в tf-форме передаточную функцию разомкнутой исходной системы в MatLab , обозначив её через Wr , для этого сначала введём передаточные функции звеньев и найдём их произведение :

>> w1=tf([78],[0.0016,1])

Transfer function:

78

------------

0.0016 s + 1

>> w2=tf([1],[0.3985,1])

Transfer function:

1

------------

0.3985 s + 1

>> w3=tf([1],[0.01,1])

Transfer function:

1

----------

0.01 s + 1

>> w4=tf([1],[0.7,1])

Transfer function:

1

---------

0.7 s + 1

>> Wr=w1*w2*w3*w4

Transfer function:

78

-------------------------------------------------------

4.463e-006 s^4 + 0.003253 s^3 + 0.2917 s^2 + 1.11 s + 1


Далее строим логарифмические амплитудные характеристики :

>> margin(Wr);gridon

Для определения устойчивости замкнутой системы автоматического управления построим годограф Найквиста от разомкнутой системы с помощью средств MatLab.(рис.5)

>> nyquist(Wr);grid on

Точка с координатами (0;-j) охватывается годографом, следовательно исходная система не устойчива.

Чтобы оценить время переходного процесса и относительное перерегулирование , введём в нашу модель единичную обратную связь и построим график переходного процесса замкнутой исходной системы (рис.6)

>> f=tf([1])

Transfer function:

1

>> W=feedback(Wr,f)

Transfer function:

78

--------------------------------------------------------

4.463e-006 s^4 + 0.003253 s^3 + 0.2917 s^2 + 1.11 s + 79

>> step(W);grid on

Из графика (рис.6) видно , что время перехода равно 15 секунд , подобная скорость переходного процесса приемлема , но не желательна .

Относительное перерегулирование составляет приблизительно

, что является слишком большим значением и превышает допустимое по условию задания (σ =5 %).

Оценив характеристики исходной системы , делаем вывод о том , что система требует доработки в виде дополнительного корректирующего устройства (регулятора)

5. Построение логарифмических амплитудно-частотных характеристик для исходной системы, желаемой и корректирующего звена .

Для построения ЛАЧХ используется стандартная сетка ,. По оси абсцисс откладывается угловая скорость в логарифмическом масштабе , т.е. наносятся отметки , соответствующие

, а около отметок пишется само значение частоты
в рад/с . Выбираем длину , равную 50мм . По оси ординат откладывается модуль в дБ.

Построим для нашей исходной системы так называемую асимптотическую ЛАЧХ ( см. приложение), представляющую собой совокупность отрезков прямых линий снаклонами , кратными величине 20 дБ/дек, а точки перегибов соответствуют десятичным логарифмам частот , равных величинам , обратным постоянным времени из передаточной функции.

Для построения исходной ЛАЧХ будем использовать передаточную функцию

;
;


Начальный уровень исходной ЛАЧХ будет равен :

Для построения желаемой ЛАЧХ необходимо найти желаемый передаточный коэффициент:

;

Из построенной желаемой ЛАЧХ определяем передаточную функцию разомкнутой желаемой системы :

,

Для построения ЛАЧХ корректирующего звена вычтем из желаемой ЛАЧХ исходную.

Передаточная функция регулятора имеет вид (см. приложение):

, где

где

,
; (см. приложение)


Произведём оценку точности и анализ качества скорректированной системы с помощью математического пакета МatLab.

>> g1=tf([49],[1,0])

Transfer function:

49

--

s

>> g2=tf([1],[0.01,1])

Transfer function:

1

----------

0.01 s + 1

>> g3=tf([1],[0.0016,1])

Transfer function:

1

------------

0.0016 s + 1

>> Gr=g1*g2*g3*g3

Transfer function:

49

-----------------------------------------------

2.56e-008 s^4 + 3.456e-005 s^3 + 0.0132 s^2 + s

>> margin(Gr);gridon

Запас по амплитуде увеличился почти в 9 раз и теперь составляет 17,3 дБ , запас по амплитуде составляет 57,8 градуса .

Введём в систему отрицательную обратную связь и оценим переходный процесс.


>> f=tf([1])

Transfer function:

1

>> G=feedback(Gr,f)

Transfer function:

----------------------------------------------------

2.56e-008 s^4 + 3.456e-005 s^3 + 0.0132 s^2 + s + 49

>> step(G);grid on

Из графика (рис.8)видно , что время перехода равно 0,15 секунды , а перерегулирование составляет примерно

% , что не превышает заданных 5 %.

Проверим систему на устойчивость при помощи построения годографа Найквиста :

>> nyquist(Gr);grid on

Оценив характеристики скорректированной системы , делаем вывод :

сходящийся колебательный процесс (рис.8) и годограф Найквиста (рис.9) , не охватывающий точку (0,-j) свидетельствуют об устойчивости системы.

4. Синтез последовательного корректирующего звена

Структурная схема САУ при последовательной коррекции изображена на рис.10, где приняты следующие обозначения : W(s)-передаточная функция исходной системы ;

Wk(s)- передаточная функция корректирующего устройства .

Полагая , что передаточная функция скорректированной системы Wск(s) равна желаемой передаточной функции Wж(s) , можно записать

Реализация аналогового регулятора на пассивных RC-цепях.

Передаточная функция корректирующего звена имеет вид:

Т.к.

, то данная ПФ может быть реализована при помощи схемы , изображённой на рис.11.

Произведём расчёт сопротивлений и ёмкости , а так же коэффициента усиления дополнительного усилителя . Расчёт устройства производится по соотношениям :

;

Пусть ёмкость конденсатора равна 10 мкФ ( модель К15П-1)

По таблице номиналов выбираем близкие по значению резисторы модели С1-1 R1=39кОм , R2=160Ом


Чтобы сделать коэффициент регулятора равным 2,02 , подберём коэффициент усиления дополнительного усилителя Куд=112.