Найдём постоянные времени с учётом номиналов найденных реальных конденсатора и резисторов :
Таким образом передаточная функция регулятора примет вид :
Реализация активного корректирующего звена на ОУ.
Принципиальная схема регулятора на ОУ приведена на рис.12.
Расчёт устройства производится по соотношениям :
Примем R1=10 кОм , тогда
По таблице номиналов выбираем близкие по значению резисторы модели С1-1 и конденсаторы модели К15П-1 :
R2= 4,7 кОм ; С2= 0,33мкФ ; С1= 39мкФ
Цифровой регулятор может быть получен из передаточной функции корректирующего устройства путём перевода её в дискретную форму с помощью аппроксимации Тустена и последующей записи разностного уравнения .
В схеме изображённой на рис.13 сигнал , поступающий в АЦП (аналого-цифровой преобразователь) преобразуется из аналоговой формы в цифровую ( дискретную) путём квантования непрерывной величины по времени ,затем сигнал поступает в D(z) (цифровая вычислительная машина),где производятся вычисления согласно разностному уравнению , после чего сигнал поступает в ЦАП ( цифровой аналоговый преобразователь), где преобразуется из цифровой в аналоговую форму
Период дискретности примем равным 0,0008с., т.е. Тs=0,0008 c.
>> Wk=tf([0.563479,2.21897,2.02],[0.0016,1,0])
Transfer function:
0.5635 s^2 + 2.219 s + 2.02
---------------------------
0.0016 s^2 + s
>> Wkd=c2d(Wk,0.0008,'tustin')
Transfer function:
282.2 z^2 - 563.5 z + 281.3
---------------------------
z^2 - 1.6 z + 0.6
Samplingtime: 0.0008
Преобразуем функцию в dsp-форму :
>> W=filt([282.2,-563.5,281.3],[1,-1.6,0.6],0.0008)
Transfer function:
282.2 - 563.5 z^-1 + 281.3 z^-2
-------------------------------
1 - 1.6 z^-1 + 0.6 z^-2
Sampling time: 0.0008
Получили передаточную функцию цифрового регулятора :
Теперь можно записать разностное уравнение в общем виде:
перемножив получим следующее:
Отсюда получаем следующее уравнение
Данное уравнение реализуется в виде компьютерной программы , и используется для управления цифровым контроллером ,который в свою очередь реализует коррекцию системы.
Заключение
В результате выполнения курсовой работы была выполнена задача синтеза корректирующего звена для исходной САР.
Для этого были решены следующие задачи: построена структурная схема нескорректированной системы и определены передаточные функции её звеньев, произведена оценка точности и анализ качества исходной системы (запаса устойчивости и быстродействия) с использованием пакета ControlSystemToolbox.
Также была построена желаемая ЛАЧХ, определены желаемые передаточные функции разомкнутой и замкнутой систем, после чего была произведена оценка показателей качества желаемой системы с использованием математического пакета MATLAB и синтез последовательного корректирующего устройства (регулятора), реализация корректирующего устройства в виде аналогового (активная и пассивная коррекции) и цифрового регуляторов , а также построение и описание функциональной схемы скорректированной системы (с приведением параметров САР и её показателей качества).
Физическая схема скорректированной САР приведена на рис. 22.
Спроектированная система автоматического регулирования устойчива и обладает показателями качества ,соответствующими требуемым в задании :перерегулирование
4 % .Список используемой литературы
1. Бесекерский В.А., Попов Е.П. Теория автоматического управления - Изд.. 4-е, перераб. И доп. - СПб, Изд-во «Профессия», 2003
2. Ерофеев А.А. Теория автоматического управления: Учебник для втузов. -2-е изд., перераб. И доп. - СПб.: Политехника, 2003. - 302с: ил.
3. Синтез следящей системы автоматического управления: Метод. Указания к курсовой работе. Сост. В.И. Будин, О.Б. Сигова, - Самара, СамГТУ, 2003.-20с.
4. МедведевВ.С„ ПотёмкинВ.Т.Control System Toolbox. Matlab5 для студентов. - М.: ДИАЛОГ - МИФИ, 1999. - 287 с.
5. Лазарев Ю. Ф. Matlab5. х. - К.: Издательская группа ВНV, 2000. - 384с.
6. Дьяконов В.П. Simulink 4. Специальный справочник. - СПб: Питер, 2002. - 528с: ил.
7. Макаров И.М ., Менский Б.М. Линейные автоматические системы(справочный материал) -2-е изд., -М.: Машиностроение , 1982.-504с.,ил.
8. Ким Д.П. Теория автоматического управления. Т.1. Линейные системы.-
М.: ФИЗМАТЛИТ , 2003.-288 с.