Смекни!
smekni.com

Моделирование динамических процессов в пневмоцилиндре (стр. 2 из 4)

При поступлении сжатого воздуха в полость рабочего цилиндра или при истечении из нее давление в различных точках объема будет неодинаковым. Сначала меняется давление вблизи входного (или выходного отверстия), затем изменение давления постепенно распространяется на весь объем.

Учитывая, что выравнивание параметров воздуха происходит достаточно быстро по сравнению с рассматриваемым процессом и большой разницы в их значениях для разных точек объема не наблюдается, в теории пневматических систем процессом выравнивания пренебрегают. Все процессы рассматривают как квазистационарные, т.е. такие, при которых во всех точках объема полости предполагаются одинаковые параметры (давление, температура и плотность). Принимаем, что рабочая полость имеет индекс 1.

Считая согласно первому закону термодинамики, что вся подведенная с газом тепловая энергия dQм расходуется на изменение внутренней энергии dU1 и на работу расширения газа dL1, запишем уравнение энергетического баланса

dQм = dU1 + dL1 (1.1)

Имея в виду, что количество тепловой энергии, поступившей в полость с газом, равно произведению его массы mм на удельную энтальпию (dQM = iMdmM), а внутренняя энергия U1 газа и совершаемая им работа L1 равны соответственно dU1 = d (u lml) и

dL1 = р1dV1,


представим уравнение (1.1) в следующем виде:

iM dmM = u ldml + ml dUl + рl dV1, (1.2)

где u l – удельная внутренняя энергия.

Выразим в уравнении (1.2) значения энтальпии и внутренней энергии через произведение температуры на теплоемкость соответственно при постоянных давлении ср и объеме сv:

сpTMdmM = сvTldml +cvmldTl + рldVl (1.3)

Рассматривая воздух как идеальный газ, молекулярными силами сцепления которого можно пренебречь, опишем его состояние с помощью уравнения Клапейрона:

рl V1= m1RT1, (1.4)

где R - газовая постоянная, R = 287 Дж/(кг, К) для воздуха (при Тм = 290 К).

Подставляя в уравнение (1.3) значение m1 dT1, полученное из уравнения (1.4), и полагая в нем

и
= R, где k - показатель адиабаты, после несложных преобразований получаем следующее выражение:

kRT м dmM = V1 dp1 + kp1 dV1.(1.5)

Заменим в уравнении (1.6) массу сжатого воздуха dmM, поступающего в полость V1 в течение времени dt, соответствующим значением GM расхода dmM = GM dt и выразим полученное уравнение относительно давления:


(1.6)

Расход GM воздуха из неограниченного объема (магистрали) определяют чаще всего по формуле Сен-Венана и Ванцеля:

, (1.7)

где μ1 - коэффициент расхода;

f1 - площадь входного отверстия;

ТМ - температура воздуха в магистрали.

Из решения (1.5) совместно с уравнением (1.7) и определяют давление Р1 в полости как функцию времени. Из формулы (1.7) следует, что расход GM является функцией отношения давлений σ, в числителе которого всегда находится давление той среды, куда истекает газ, а в знаменателе - давление среды, откуда вытекает этот газ.

Представим формулу (1.7) расхода воздуха из магистрали σМ в более удобном виде:

, (1.7)

где

;

;

.

При Т м = 293 К расход GM = 0,00912

, причем Рм в Па. Чтобы найти максимум расходной функции
ер (а), приравняем нулю ее производную
, откуда получим, критическое отношение давлений

= 0,5282 (при к = 1,4). (1.9)

Подставим в уравнение (1.6) значение расхода GM из выражения (1.8), получим уравнение для определения давления в полости наполнения в общем виде:

(1.10)

Объем V1 рабочей полости равен произведению площади поршня F1 на перемещение поршня х (с учетом его начальной координаты х01), т.е.

. Подставим это значение в (1.10), получим

, (1.11)

где

,

V01 - начальный объем рабочей плости,

F1 – площадь поршня.

Если это уравнение выразить относительно

1, то после интегрирования найдем время наполнения постоянного объема от начального безразмерного давления σ11 до заданного давления σ12:

(1.12)

Значения функций Ψ111) и Ψ1 12) определяем по графику, приведенному на рис.3.

Рисунок 3

Формулу (1.13) применяют для определения времени наполнения полости постоянного объема до заданного давления, в том числе и для определения времени

3 (см. циклограмму на рис. 3).

1.3 Процесс истечения сжатого воздуха из выхлопной полости привода

При перемещении поршня 1 (см. рис. 1) в дифференциальном приводе давление сжатого воздуха в выхлопной полости 2 может повышаться вследствие уменьшения ее объема. В этом случае происходит истечение воздуха в магистраль.

Здесь также может быть применен первый закон термодинамики (1.1), но в этом уравнении следует поставить знак минус в левой части, так как происходит истечение воздуха


-dQ2 = dU2 + dL2.(1.14)

Соответственно изменяем индекс 1, относящийся к рабочей полости, на индекс 2 выхлопной полости. Далее, выкладки будут аналогичны приведенным в формулах (1.1) - (1.5). Остановимся на последнем выражении

-k∙R∙Т2 dm2 = V22 + k∙Р2 dV2. (1.15)

Имея в виду, что

dm2 = - d (

) =
,

получаем

22 + k∙Р2 d
2 = 0 или после интегрирования и потенцирования этого выражения - P2
= const - уравнение адиабаты.

Расход воздуха из ограниченного объема V2 в магистраль описывается также формулой Сен-Венана и Ванцеля, однако в ней следует положить ТМ = Т2, Рм =Р2 имея при этом в виду, что все эти величины являются переменными:

, (1.16)

где

при 0,528 < σ < 1.

Подставив в уравнении (1.15) dm2 =

2 dt и
2 из (1.16), получим уравнение для определения давления в выхлопной полости, соединенной с магистралью:

, (1.17)

где

- площадь поршня со стороны штоковой полости.

Температура Т2 в уравнении (1.17) может быть выражена через давление Р2 на основании уравнения адиабаты:

.(1.18)

Тогда получим следующее уравнение для определения давления воздуха при истечении его из ограниченного объема:

(1.19)

При обратном ходе подготовительное время t3 будет характеризовать время истечения полости до необходимого давления, определяемого нагрузкой.

Однако при обратном ходе эта полость становится выхлопной, соединенной с атмосферой. Давление будет изменяться по уравнению (1.19), в котором следует вместо 1/σ2 подставить σа/σ2 так как истечение будет происходить в атмосферу пропорционально отношению давлений Ра/Р2 = σа/σ2 где σа = Ра/Рм, σ2= Р2М.

Так как при обратном ходе поршневая полость становится выхлопной, присвоим ей индекс 2: