Максимальное касательное напряжение будет в сечении, расположенном под углом 45° к поперечному и равно оно половине напряжения в поперечном сечении:
τmax = τα=45° = 0,5 σ. (13)
Оценивая напряжения в различных сечениях стержня при растяжении или сжатии, видим, что стержень может разрушиться или по поперечному сечению в результате действия максимальных нормальных напряжений, или от действия максимальных касательных напряжений по сечению, наклоненному к поперечному под углом 45°.
Закон парности касательных напряжений
Касательные напряжения на наклоненной под углом α к поперечному сечению площадке (рис. 6, а) определяют по формуле (5.22), т.е. τα = 0,5σ
sin 2α, где σ – напряжение в поперечном сечении стержня. Касательные напряжения считают положительными, если для совмещения по кратчайшему пути их направления с направлением внешней нормали к площадке, напряжения нужно повернуть против часовой стрелки. На взаимно перпендикулярной площадке при угле ее наклона к поперечному сечению, равном α + π/2, касательные напряжения будут равныτα + π/2 = 0,5σ sin 2(α + π/2) = – 0,5σ sin 2α. (14)
Анализируя зависимости видим, что
τα = – τα + π/2 . (15)
Это выражение называют законом парности касательных напряжений, согласно которому на двух взаимно перпендикулярных площадках действуют равные по величине и обратные по знаку касательные напряжения.
Касательные напряжения на взаимно перпендикулярных площадках направлены или от ребра пересечения площадок (рис. 6, а), или к ребру пересечения площадок, как на рис. 6, б. Закон парности касательных напряжений имеет силу и при иных напряженных состояниях.