Смекни!
smekni.com

Определение механических свойств материалов. Условия прочности и жесткости конструкций (стр. 1 из 3)

БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра инженерной графики

РЕФЕРАТ

На тему:

«Определение механических свойств материалов. Условия прочности и жесткости конструкций»

МИНСК, 2008

Определение механических свойств материалов. Диаграмма напряжений

Свойства материалов при расчетах на прочность, жесткость и устойчивость определяются механическими характеристиками. Величины механических характеристик могут быть получены в лабораторных условиях доведением образцов до разрушения или чрезмерной деформации. Испытания могут проводить на деформации растяжения, сжатия, кручения, изгиба при действии статической или переменной нагрузок.

Наибольшее распространение имеют испытания на растяжение статической нагрузкой, так как они наиболее просты и дают достаточную информацию о поведении материала при других видах деформации. На специальных машинах растягивают образцы (рис. 1, а), размеры которых ограничены стандартом, записывая автоматически зависимость изменения растягивающей силы F от удлинения образца Δℓ , т.е. диаграмму растяжения в координатах F = f(Δℓ).

Рис. 1

Известно, что величина растягивающей силы F и величина удлинения Δℓ образцов из одного материала зависят от их размеров. Чтобы можно было сравнить результаты испытаний образцов различных размеров, изготовленных из одинаковых материалов, диаграмму растяжения перестраивают в координатах σ = F/A и ε = Δℓ/ ℓ , где А – первоначальная площадь сечения образцов; – первоначальная длина рабочей части образца. Эту диаграмму σ = f (ε) называют диаграммой напряжений или условной диаграммой растяжения, вид которой почти не зависит от абсолютных размеров используемых при испытании образцов, а определяется свойствами материала. Типовая диаграмма напряжений при растяжении образцов из пластичных материалов (рис. 1, в) характеризуется следующими участками. Участок длиной ОА до некоторого напряжения σpr, называемого пределом пропорциональности, представляет прямую линию. На этом участке справедлив закон Гука и величина абсолютной деформации Δℓ прямо пропорциональна растягивающему усилию F, а относительная деформация ε – напряжению σ.

После достижения предела пропорциональности σpr деформации ε растут не прямо пропорционально напряжениям σ, а быстрее. Начиная с некоторой точки В, лежащей уже на криволинейном участке диаграммы, замечено появление незначительных (0,05%) остаточных деформаций, до точки В деформации еще упругие. Точке В соответствует предел упругости материала σe – то наибольшее напряжение, до которого в материале появляются только упругие деформации. Предел упругости практически совпадает с пределом пропорциональности и эти величины обычно не разграничиваются. Например, для стали Ст3 предел пропорциональности σpr ≈ 210 МПа, а предел упругости σe ≈ 220 МПа.

При дальнейшем увеличении нагрузки за точкой В появляются остаточные деформации. В точке С начинается процесс деформации металла без увеличения внешней нагрузки. Горизонтальный участок диаграммы называется площадкой текучести, а напряжение, соответствующее данной точке, – пределом текучести (σy). Ряд материалов дает при растяжении диаграмму без выраженной площадки текучести (рис 5.9). Для таких материалов пределу текучести σy соответствует напряжение, при котором остаточная деформация равна 0,2%. Поэтому иногда предел текучести обозначают σ0,2 и называют условным пределом текучести.

На участке DK сопротивление деформированию начинает значительно возрастать при увеличении деформации. Участок называется зоной упрочнения. Точка К диаграммы соответствует наибольшей по величине нагрузке, а напряжение, соответствующее этой точке (наибольшей по величине нагрузке), называется пределом прочности σu или временным сопротивлением и обозначается при растяжении σut. До точки К весь образец удлиняется примерно одинаково, при превышении напряжения σu деформация образца сосредоточивается в одном месте (локализуется). Это вызывает местное сужение поперечного сечения образца с образованием так называемой «шейки». Площадь сечения образца в шейке быстро уменьшается, и, как следствие, падает усилие и условное напряжение. В точке R происходит разрыв образца по наименьшему сечению шейки (рис. 2, б).

Кроме перечислимых выше прочностных характеристик при испытании на растяжение определяют характеристики пластичности материала, т.е. способности материала получать не разрушаясь большие остаточные деформации: относительное остаточное удлинение при разрыве

(1)

и относительное остаточное сужение при разрыве

, (2)

где p, Ap – соответственно расчетная длина образца и площадь поперечного сечения в наиболее тонком месте шейки после разрыва.

Чем пластичнее материал, тем больше εr и ψr. Если испытываемый образец не доводя до разрушения нагрузить до состояния, соответствующего точке L диаграммы (см. рис. 2, в), а затем разгрузить, то процесс разгрузки изобразиться прямой LL1. Эта прямая всегда параллельна участку ОА диаграммы. При разгрузке деформация полностью не исчезает. Она уменьшается на величину упругой деформации, т.е. на величину L1M. Отрезок OL1 представляет собой остаточную или пластическую деформацию.

Рис. 3

Рис. 4

Противоположным свойству пластичности является хрупкость, т.е. способность материала разрушаться при незначительных остаточных деформациях. Для хрупких материалов характерно разрушение при малых остаточных деформациях (рис. 4), поэтому при их испытании на растяжение определяется только предел прочности σut. К хрупким материалам относят чугуны, высокоуглеродистые инструментальные стали, стекло и др.

Твердость материалов

На производстве при необходимости быстрого контроля свойств изготавливаемых деталей, например, контроля прочности после термической или термохимической обработки, метод испытания образцов на растяжение имеет много неудобств. Применяют сравнительную оценку свойств материала, минуя изготовление и разрушение образцов, путем измерения твердости.

Твердость (Н) способность материала оказывать сопротивление проникновению в него другого, более твердого тела. При вдавливании в материал инородного тела возникают местные пластические деформации, сопровождающиеся при дальнейшем увеличении нагрузки местным разрушением. Показатель твердости связан непосредственно с показателями прочности и пластичности. Твердость материала тесно связана также с его обрабатываемостью: чем тверже материал, тем хуже он обрабатывается, от твердости зависит и износостойкость.

Испытания по определению твердости характеризуются быстротой выполнения и не сопровождаются разрушением деталей. Существует несколько методов определения твердости. Выбор метода зависит от твердости испытуемого материала, толщины, размеров и формы изделия.

Метод Бринелля основан на вдавливании в поверхность испытуемого материала стального закаленного шарика диаметром 2,5; 5 или 10 мм под действием силы F, приложенной перпендикулярно к поверхности изделия в течение определенного времени. Числом твердости по Бринеллю называется отношение нагрузки F к площади сферического отпечатка А, т.е. F/ A. Твердость по Бринеллю при условиях испытания, когда диаметр шарика 10 мм, F = 3000 кгс и продолжительность выдержки под нагрузкой от 10 до 15 с, обозначается цифрами, характеризующими число твердости, и буквами НВ. Например, 120НВ, где 120 – число твердости в кгс/мм2; НВ – твердость по Бринеллю.

При других режимах испытания после букв НВ указывают условия испытания в следующем порядке: диаметр шарика, нагрузку и продолжительность выдержки под нагрузкой, разделенные наклонной чертой. Например, 120 НВ 5/750/20, где 120 – число твердости в кгс/ мм2; НВ – твердость по Бринеллю; 5 – диаметр шарика в мм; 750 – нагрузка в кгс; 20 – время (в секундах) выдержки под нагрузкой.

Чтобы не проводить вычислений, имеются таблицы перевода диаметра отпечатка в число твердости НВ. Выбор диаметра шарика зависит от толщины детали. Минимальная толщина испытываемого образца, чтобы исключить деформацию изгиба, должна быть не менее десятикратной глубины отпечатка. Методом Бринелля испытывают материалы с твердостью до 450 НВ, что связано с твердостью закаленных шариков. Этим методом нельзя определить твердость пленок, твердость деталей после химико-термической обработки из-за незначительной толщины обработанного поверхностного слоя.

О твердости по методу Роквелла судят по разности глубин, на которые проникает алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,588 мм при действии двух последовательно приложенных нагрузок: предварительной величиной 10 кгс и общей – 60, 100 или 150 кгс, равной сумме предварительной и основной нагрузок. Для определения числа твердости применяют три шкалы. Шкала В соответствует вдавливанию шарика и число твердости при этом обозначается HRB. Для более твердых материалов применяются шкалы А и Сэ, соответствующие вдавливанию алмазного конуса. Вначале индентор вдавливается в поверхность образца под предварительной нагрузкой, которая не снимается до конца испытаний, что обеспечивает точность измерений. Затем подается основная нагрузка (для шкалы А – 50 кгс, для шкалы В – 90 кгс, для шкалы С – 140 кгс), после снятия которой число твердости определяют глубиной отпечатка. Размерность чисел твердости по Роквеллу – условные единицы. За единицу твердости принята величина, соответствующая осевому перемещению индентора на 0,002 мм. По шкалам А, В и Сэ устанавливаются следующие пределы измерения твердости: шкала А – 70 … 85 ед. (твердые сплавы, изделия с высокой поверхностной твердостью); шкала Сэ – 20 … 67 ед. (термообработанная сталь); шкала В – 25 … 100 ед. (мягкие металлы и сплавы).