Дані розробки з уточнення параметрів вібраційного способу зниження викидонебезпечності включені у виді уточнень у нормативний документ “Правила ведення гірських робіт на шарах, схильних до газодинамічних явищ”.
Розроблені рекомендації з оцінки параметрів ефективності заходів щодо зниження викидонебезпечності і поліпшенню умов дегазації вуглепородного масиву, включені в ТЕО ВАТ “Автоматгірмаш ім.В.А. Антипова” та увійшли в рамках елементів модуля в галузеву програму “Модульно-адаптивна прогностична система керування вугільною шахтою”, затвердженої міністром вугільної промисловості і Донецькою обласною державною адміністрацією.
Обґрунтованість і вірогідність наукових положень, висновків і рекомендацій, отриманих у дисертації, підтверджується коректністю постановки задач, використанням класичних апробованих методів молекулярної механіки і динаміки, рішенням тестових задач, задовільної (до 95%) збіжністю результатів рішення тестових задач з даними експериментальних досліджень методами інфрачервоної спектроскопії, ядерного магнітного резонансу а також сейсморозвідки.
Дисертація є закінченою науково-дослідною роботою, в якій шляхом встановлення закономірностей сорбційної взаємодії молекул метану з мікроструктурою вугілля та взаємозв’язку конформаційних перебудов у вугільній речовині з параметрами дифузії метану отримано нові наукові результати в галузі геомеханіки, які полягають в обґрунтуванні параметрів багаточастотної вібраційної дії для підвищення ефективності та безпеки ведення підготовчих виробок на пластах, схильних до раптових викидів вугілля та газу.
Основні наукові і практичні результати роботи полягають у наступному.
1. На основі аналізу та узагальнення експериментальних досліджень про молекулярну і мікропористу структуру вугілля побудовано модель мікросорбційного простору вугілля з його візуалізацією, що дозволяє розраховувати енергетичні і геометричні характеристики міжатомної взаємодії для різних ступенів метаморфізму вугілля.
2. Побудовано модель мікропори вугільної речовини, в якості якої було прийнято молекули фулеренів, які являють собою сфери діаметром від 7 до 22 Å, та складаються з атомів конденсованого ароматичного вуглецю. Також побудовано моделі міжпорового простору вугілля різного ступеню метаморфізму, які складаються з 4-5 графітоподібних шарів по 5-7 кластерів у кожному шарі. На основі моделювання методом молекулярної механіки і динаміки та подальшого порівняння з експериментальними спектрами інфрачервоної спектроскопії показано, молекулярна механіка з використанням силового поля ММ+ адекватно описує взаємодію у вугільній речовині: відхилення отриманих значень від експериментальних даних не перевищує 7%.
3. Уперше встановлено, що рух молекул метану в мікропорах вугілля має характер коливань, властиві частоти яких експоненціально зменшуються з 45 до 15 ГГц при збільшенні діаметра мікропори з 12 до 22 Å, та не залежать від кількості метану в мікропорах вугілля.
4. Розроблено фізичну модель, математичний алгоритм і програму чисельного розрахунку оцінки вібраційної післядії на мікросорбційний простір вугілля, що базується на конформаційному механізмі деформування структури вугілля і дозволяє розраховувати енергії конформаційних переходів у вугільній речовині при різних параметрах вібраційної дії.
5. Встановлено, що закономірності зміни мікроструктури вугілля при вібродії обумовлені конформаційними переходами в молекулярній структурі вугілля, які представляють собою перебудову вуглецевих ланцюгів аліфатичної бахроми в графітоподібних шарах вугільної речовини, які характеризуються енергією активації, яка складає 5 – 400 кДж/моль, і часом релаксації молекулярної структури вугілля, що знаходяться в показовій залежності від енергії активації, що дозволило встановити зв'язок між енергією активації конформаційних переходів і зміною міжшарової відстані у вугіллі, яка має характер лінійної залежності.
6. Встановлено, що вібраційний вплив на вугільний пласт за допомогою індуціювання релаксаційних процесів у молекулярній структурі вугільної речовини, дозволяє досягати енергетичних бар'єрів активації конформаційних переходів у структурі вугілля, за рахунок чого збільшується відстань між графітоподібними шарами, і, як наслідок, у 1,5 – 4 рази відбувається підвищення коефіцієнта твердотільної дифузії молекул метану в міжпоровому просторі вугільної речовини, що дозволяє здійснювати ефективну десорбцію газу.
7. Визначено ефективні частоти вібродії на мікросорбційний простір вугільного масиву, які для моделі вугільної речовини із вмістом вуглецю 89,10% складають значення порядку 3, 370 та 3,3*104 Гц для глибини залягання пласта 1000 м, тривалість дії на частоті 3 Гц при амплітуді дії 7 кПа з радіусом віброобробки 5 м склала порядку 5 год.
8. Залежність ефективної частоти віброобробки на мікросорбційний простір вугільного масиву від глибини залягання вугільного шару носить характер зростаючої експонентної функції, і в інтервалі глибин 400 – 1400 м зростає для вугілля зі змістом вуглецю 89,1% з 1,5 до 13 Гц.
9. Результати, отримані в дисертаційній роботі, були використані при розробці методики виконання гірничо-експериментальних робіт з газодинамічного розвантаження мікросорбційного простору вугілля за допомогою вібраційної дії при проведенні підготовчих виробок, переданої в МакНДІ. Параметри вібродії для зниження викидонебезпечності при проходженні виробок включені у виді уточнень у “Правила безпеки ведення гірських робіт на шарах, схильних до газодинамічних явищ”. Розроблені рекомендації з оцінки ефективності заходів щодо зниження викидонебезпечності і дегазації вуглепородного масиву ввійшли в: ТЕО ВАТ “Автоматгірмаш” ім.В.А. Антипова “Модульно-адаптивна прогностична система керування вугільною шахтою” та у галузеву програму “Модульно-адаптивна прогностична система керування вугільною шахтою”, затверджену Міністерством вугільної промисловості і Донецькою облдержадміністрацією в 2006 р.
1. Минеев, С.П. Активация десорбции метана в угольных пластах [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов. – Днепропетровск: Вебер (Днепропетровское отделение), 2007. – 252 с.
2. Минеев, С.П. О моделировании сорбционных процессов в газонасыщенном углепородном мас сиве при нестационарном технологическом воздействии [Текст] / С.П. Минеев, А.А. Прусова, М.Г. Корнилов // Науковий вісник НГАУ. – 2002. – №3. – С.30 – 32.
3. Минеев, С.П. Энергия дисперсионной адсорбции в системе метан-уголь [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов // Науковий вісник НГАУ. – 2002. – №6. – С.54 – 56.
4. Минеев, С.П. О энергии дисперсионной адсорбции в системе “метан-уголь” [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов // Материалы Третьей всеукраинской научной конференции “Математические проблемы технической механики”. – Днепродзержинск: ДДТУ, 2003. – С.153.
5. Корнилов, М.Г. К уравнению состояния адсорбированного метана в угольном массиве [Текст] / М.Г. Корнилов // Геотехническая механика межвед. сб. научных трудов. –Днепропетровск. – 2005. – Вып.55. – С.151 – 157.
6. Минеев, С.П. Энергетические барьеры активации структурных изменений в угольном мас сиве [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов // Матеріали міжнародної конференції “Форум гірників – 2005”, Т.3. – Д.: НГУ, 2005. – С.151–156.
7. Корнилов М.Г. Молекулярно-механическая модель структуры угольного вещества [Текст] / М.Г. Корнилов // Геотехническая механика: межвед. сб. научных трудов. –Днепропетровск. – 2006. – Вып.62. – С.42–49.
8. Минеев, С.П. Вопросы отработки газоносных пластов в сложных условиях [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов, А.Г. Исютин // Материалы V Международной научной школы-семинара “Импульсные процессы в механике сложных сред”. – Николаев: Атолл, 2003. – С.121 – 123.
9. Минеев, С.П. Динамика адсорбции метана в микропористом пространстве угля [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов // Матеріали міжнародної конференції “Форум гірників - 2006”. – Д.: НГУ, 2006. – С.154-158.
10. Минеев, С.П. Динамика сорбционной связи в микропоре газонасыщенного угля [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов // Материалы XIV Международной научной школы им. академика С.А. Христиановича – Симферополь: Таврич. нац. ун-т, 2004. – С.89-93.
11. Корнилов, М.Г. О состоянии адсорбированного метана в угольном массиве [Текст] / М.Г. Корнилов, А.С. Петленко // Материалы международной научно-технической конференции молодых учених, аспирантов и студентов “Совершенствование технологи строительства шахт и подземных сооружений”. –Донецк: ДонГТУ, 2005. – С.54–55.
12. Минеев, С.П. Оценка волновой энергии для активации молекул метана в микропористом пространстве угля [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов // Деформирование и разрушение материалов с дефектами и динамические явления в горных породах и выработках: Материалы XV Международной научной школы им. академика С.А. Христиановича – Симферополь: Таврич. нац. ун-т, 2005. – С.170–172.
13. Минеев, С.П. Частоты вибрационного воздействия для интенсификации диффузионных процессов в микросорбционном пространстве угля [Текст] /С.П. Минеев, А.А. Прусова, М.Г. Корнилов, А.А. Рубинский // Деформирование и разрушение материалов с дефектами и динамические явления в горных породах и выработках: Материалы XVI Международной научной школы им. академика С.А. Христиановича – Симферополь: Таврич. нац. ун-т, 2006. – С.188 – 194.