1. Измерения с однократными наблюдениями. За результат измерения в этом случае принимают результат однократного наблюдения х (с введением поправки, если она имеется), используя предварительно полученные (например, при разработке МВИ) данные об источниках, составляющих погрешность.
Доверительные границы НСП результата измерения Q(P) вычисляют по формуле
, (3.3)где k(P) - коэффициент, определяемый принятой Р и числом m1 составляющих НСП: Q(P) - найденные нестатистическими методами границы
j-ой составляющей НСП (границы интервала, внутри которого находится эта составляющая, определяемые при отсутствии сведений о вероятности ее нахождения в этом интервале). При Р = 0,90 и 0,95 k(P) равен 0,95 и 1,1, соответственно при любом числе слагаемых m1. При Р = 0,99 значения k(P) следующие (табл. 3.3):
Таблица 3.3
m1 | k(P) | m1 | k(P) |
5 и более | 1,45 | 3 | 1,30 |
4 | 1,40 | 2 | 1,20 |
Если составляющие НСП распределены равномерно и заданы доверительными границами Q(P), то доверительную границу НСП результата измерения вычисляют по формуле
, (3.4)где k и kj - те же, что и в предыдущем случае, коэффициенты, соответствующие доверительной вероятности Р и Рj соответственно; m1 - число составляющих НСП.
Среднее квадратическое отклонение (СКО) результата измерения с однократным наблюдением вычисляют одним из следующих способов:
1. Если в технической документации на СИ или в МВИ указаны нормально распределенные составляющие случайной погрешности результата наблюдения (инструментальная, методическая, из-за влияющих факторов, оператора и т.д.), то СКО вычисляют по формуле
,где m2 - число составляющих случайной погрешности; Si - значения СКО этих составляющих.
Доверительную границу случайной погрешности результата измеренияя Î(Р) в этом случае вычисляют по формуле
, (3.5)где zP/2 - значение нормированной функции Лапласа в точке Р/2 при доверительной вероятности Р (табл. 3.4):
Р | zP/2 | Р | zP/2 |
0,90 | 1,65 | 0,97 | 2,17 |
0,95 | 1,96 | 0,98 | 2,33 |
0,96 | 2,06 | 0,99 | 2,58 |
2. Если в тех же документах случайные составляющие погрешности результата наблюдения представлены доверительными границами Îi(P) при одной и той же доверительной вероятности P, то доверительную границу случайной погрешности результата измерения с однократным наблюдением при доверительной вероятности вычисляют по формуле
.3. Если случайные составляющие погрешности результата наблюдения определяют предварительно в реальных рабочих условиях экспериментальными методами при числе наблюденийи ni <30, то:
,где t - коэффициент Стьюдента, соответствующий наименьшему числу наблюдений nmin из всех ni, можно найти в [4] или в любом справочнике по теории вероятностей; S(x) - оценки СКО случайных составляющих погрешности результата наблюдения, определяемых по формуле (3.10). Если в эксперименте невозможно или нецелесообразно определить СКО составляющих случайной погрешности и определено сразу суммарное СКО, то в формуле (3.5) m2 = 1.
4. Если случайные составляющие погрешности результата наблюдений представлены доверительными границами Î(Pi), соответствующими разным вероятностям Рi, то сначала определяют СКО результата измерения с однократным наблюдением по формуле
,где zPi/2 - значения функции Лапласа. Затем вычисляют Î(P) по формуле (3.4).
Для суммирования систематической и случайной составляющих погрешностей рекомендуется следующий способ:
Если Q(P)/S(x) < 0,8, (3.6)
то НСП Q(P) пренебрегают и окончательно принимают Î(P) за погрешность результата измерения D(P) при доверительной вероятности Р.
Если 0,8 £ Q(P)/S(x) £ 8, то доверительную границу погрешности результата измерений вычисляют по формуле
, (3.8)где KS(g) =
; .2. Измерения с многократными наблюдениями. Обработку результатов в этом случае рекомендуется начать с проверки на отсутствие промахов (грубых погрешностей). Промах — это результат xп отдельного наблюдения, входящего в ряд из n наблюдений, который для данных условий измерений резко отличается от остальных результатов этого ряда. Если оператор в ходе измерения обнаруживает такой результат и достоверно находит его причину, он вправе его отбросить и провести (при необходимости) дополнительное наблюдение взамен отброшенного.
При обработке уже имеющихся результатов наблюдений произвольно отбрасывать отдельные результаты нельзя, так как это может привести к фиктивному повышению точности результата измерения. Поэтому применяют следующую процедуру. Вычисляют среднее арифметическое
результатов наблюдений хi по формуле . (3.9)Затем вычисляют оценку СКО результата наблюдения как
. (3.10)Находят отклонение vп предполагаемого промаха xп от
:vп = | xп -
| .По числу всех наблюдений n (включая xп) и принятому для измерения значению Р (обычно 0,95) по [4] или любому справочнику по теории вероятностей находят z(P,n) — нормированное выборочное отклонение нормального распределения. Если vп < z×S(x), то наблюдение xп не является промахом; если vп ³ z×S(x), то xп — промах, подлежащий исключению. После исключения xп повторяют процедуру определения
и S(x) для оставшегося ряда результатов наблюдений и проверки на промах наибольшего из оставшегося ряда отклонений от нового значениям (вычисленного исходя из n - 1).За результат измерения принимают среднее арифметическое
[см. формулу (3.9)] результатов наблюдений хi. Погрешность содержит случайную и систематическую составляющие. Случайную составляющую, характеризуемую СКО результата измерения, оценивают по формуле .В предположении принадлежности результатов наблюдений хi к нормальному распределению находят доверительные границы случайной погрешности результата измерения при доверительной вероятности Р по формуле Î(P) = t(P,n) × S(
) , (3.11)где t - коэффициент Стьюдента.
Доверительные границы Q(Р) НСП результата измерения с многократными наблюдениями определяют точно так же, как и при измерении с однократным наблюдением — по формулам (3.3) или (3.4).
Суммирование систематической и случайной составляющих погрешности результата измерения при вычислении D(Р) рекомендуется осуществлять с использованием критериев и формул (3.6 – 3.8), в которых при этом S(x) заменяется на S(
) = S(x)/ .3. Косвенные измерения. Значение измеряемой величины А находят по результатам измерений аргументов а1, . . . , аi,…am, связанных с искомой величиной уравнением
f(a1,….ai….am). (3.12)Вид функции f определяется при установлении модели ОИ.
Косвенное измерение при линейной зависимости. Искомая величина А связана с m измеряемыми аргументами уравнением
,где bi - постоянные коэффициенты.
Предполагается, что корреляция между погрешностями измерений ai отсутствует. Результат измерения А вычисляют по формуле
,где
— результат измерения ai с введенными поправками. Оценку СКО результата измерения S(A) вычисляют но формуле ,где
— оценка СКО результата измерений .