Смекни!
smekni.com

Основы метрологии (стр. 11 из 22)

1. Измерения с однократными наблюдениями. За результат измерения в этом случае принимают результат однократного наблюдения х (с введением поправки, если она имеется), используя предварительно полученные (например, при разработке МВИ) данные об источниках, составляющих погрешность.

Доверительные границы НСП результата измерения Q(P) вычисляют по формуле

, (3.3)

где k(P) - коэффициент, определяемый принятой Р и числом m1 составляющих НСП: Q(P) - найденные нестатистическими методами границы

j-ой составляющей НСП (границы интервала, внутри которого находится эта составляющая, определяемые при отсутствии сведений о вероятности ее нахождения в этом интервале). При Р = 0,90 и 0,95 k(P) равен 0,95 и 1,1, соответственно при любом числе слагаемых m1. При Р = 0,99 значения k(P) следующие (табл. 3.3):

Таблица 3.3

m1 k(P) m1 k(P)
5 и более 1,45 3 1,30
4 1,40 2 1,20

Если составляющие НСП распределены равномерно и заданы доверительными границами Q(P), то доверительную границу НСП результата измерения вычисляют по формуле

, (3.4)

где k и kj - те же, что и в предыдущем случае, коэффициенты, соответствующие доверительной вероятности Р и Рj соответственно; m1 - число составляющих НСП.

Среднее квадратическое отклонение (СКО) результата измерения с однократным наблюдением вычисляют одним из следующих способов:

1. Если в технической документации на СИ или в МВИ указаны нормально распределенные составляющие случайной погрешности результата наблюдения (инструментальная, методическая, из-за влияющих факторов, оператора и т.д.), то СКО вычисляют по формуле

,

где m2 - число составляющих случайной погрешности; Si - значения СКО этих составляющих.

Доверительную границу случайной погрешности результата измеренияя Î(Р) в этом случае вычисляют по формуле

, (3.5)

где zP/2 - значение нормированной функции Лапласа в точке Р/2 при доверительной вероятности Р (табл. 3.4):

Таблица 3.4

Р zP/2 Р zP/2
0,90 1,65 0,97 2,17
0,95 1,96 0,98 2,33
0,96 2,06 0,99 2,58

2. Если в тех же документах случайные составляющие погрешности результата наблюдения представлены доверительными границами Îi(P) при одной и той же доверительной вероятности P, то доверительную границу случайной погрешности результата измерения с однократным наблюдением при доверительной вероятности вычисляют по формуле

.

3. Если случайные составляющие погрешности результата наблюдения определяют предварительно в реальных рабочих условиях экспериментальными методами при числе наблюденийи ni <30, то:

,

где t - коэффициент Стьюдента, соответствующий наименьшему числу наблюдений nmin из всех ni, можно найти в [4] или в любом справочнике по теории вероятностей; S(x) - оценки СКО случайных составляющих погрешности результата наблюдения, определяемых по формуле (3.10). Если в эксперименте невозможно или нецелесообразно определить СКО составляющих случайной погрешности и определено сразу суммарное СКО, то в формуле (3.5) m2 = 1.

4. Если случайные составляющие погрешности результата наблюдений представлены доверительными границами Î(Pi), соответствующими разным вероятностям Рi, то сначала определяют СКО результата измерения с однократным наблюдением по формуле

,

где zPi/2 - значения функции Лапласа. Затем вычисляют Î(P) по формуле (3.4).

Для суммирования систематической и случайной составляющих погрешностей рекомендуется следующий способ:

Если Q(P)/S(x) < 0,8, (3.6)

то НСП Q(P) пренебрегают и окончательно принимают Î(P) за погрешность результата измерения D(P) при доверительной вероятности Р.

Если Q(P)/S(x) > 0,8, (3.7)

то пренебрегают случайной погрешностью и принимают D(P) = Q(P).

Если 0,8 £ Q(P)/S(x) £ 8, то доверительную границу погрешности результата измерений вычисляют по формуле

, (3.8)

где KS(g) =

;
.

2. Измерения с многократными наблюдениями. Обработку результатов в этом случае рекомендуется начать с проверки на отсутствие промахов (грубых погрешностей). Промах — это результат xп отдельного наблюдения, входящего в ряд из n наблюдений, который для данных условий измерений резко отличается от остальных результатов этого ряда. Если оператор в ходе измерения обнаруживает такой результат и достоверно находит его причину, он вправе его отбросить и провести (при необходимости) дополнительное наблюдение взамен отброшенного.

При обработке уже имеющихся результатов наблюдений произвольно отбрасывать отдельные результаты нельзя, так как это может привести к фиктивному повышению точности результата измерения. Поэтому применяют следующую процедуру. Вычисляют среднее арифметическое

результатов наблюдений хi по формуле

. (3.9)

Затем вычисляют оценку СКО результата наблюдения как

. (3.10)

Находят отклонение vп предполагаемого промаха xп от

:

vп = | xп -

| .

По числу всех наблюдений n (включая xп) и принятому для измерения значению Р (обычно 0,95) по [4] или любому справочнику по теории вероятностей находят z(P,n) — нормированное выборочное отклонение нормального распределения. Если vп < z×S(x), то наблюдение xп не является промахом; если vп ³ z×S(x), то xп — промах, подлежащий исключению. После исключения xп повторяют процедуру определения

и S(x) для оставшегося ряда результатов наблюдений и проверки на промах наибольшего из оставшегося ряда отклонений от нового значениям (вычисленного исходя из n - 1).

За результат измерения принимают среднее арифметическое

[см. формулу (3.9)] результатов наблюдений хi. Погрешность
содержит случайную и систематическую составляющие. Случайную составляющую, характеризуемую СКО результата измерения, оценивают по формуле

.

В предположении принадлежности результатов наблюдений хi к нормальному распределению находят доверительные границы случайной погрешности результата измерения при доверительной вероятности Р по формуле Î(P) = t(P,n) × S(

) , (3.11)

где t - коэффициент Стьюдента.

Доверительные границы Q(Р) НСП результата измерения с многократными наблюдениями определяют точно так же, как и при измерении с однократным наблюдением — по формулам (3.3) или (3.4).

Суммирование систематической и случайной составляющих погрешности результата измерения при вычислении D(Р) рекомендуется осуществлять с использованием критериев и формул (3.6 – 3.8), в которых при этом S(x) заменяется на S(

) = S(x)/
.

3. Косвенные измерения. Значение измеряемой величины А находят по результатам измерений аргументов а1, . . . , аi,…am, связанных с искомой величиной уравнением

f(a1,….ai….am). (3.12)

Вид функции f определяется при установлении модели ОИ.

Косвенное измерение при линейной зависимости. Искомая величина А связана с m измеряемыми аргументами уравнением

,

где bi - постоянные коэффициенты.

Предполагается, что корреляция между погрешностями измерений ai отсутствует. Результат измерения А вычисляют по формуле

,

где

— результат измерения ai с введенными поправками. Оценку СКО результата измерения S(A) вычисляют но формуле

,

где

— оценка СКО результата измерений
.