где h =14.3 мм - высота ремня.
Предварительно принимаем стандартное значение межосевого расстояния а = 600мм.
Расчётная длина ремня:
Lp=2a+0.5π (D1 +D2) + (D1 +D2) 2/4a = 2·600+0.5π (200+710) +
+ (200+710) 2 /4·600=2737,79 мм
принимаем стандартную длину L = 2800 мм.
Значение межосевого расстояния с учётом стандартной длины ремня:
вычислим
Dcp=0.5 (D1 +D2) = 0.5 (200+710) = 455 мм
При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01L=28 мм, для того чтобы облегчить надевание ремней на шкив, для увеличения натяжения ремней необходимо предусмотреть возможность увеличения межосевого расстояния на 0,025L=70 мм, таким образом ход натяжного устройства составит 28+70=98 мм. Регулировка ремённой передачи будет осуществляться перемещением двигателя при помощи регулировочного винта.
Угол охвата меньшего шкива:
Необходимое число ремней:
где Po= 5.83 кВт - мощность, допускаемая для передачи одним ремнем, табл 7.8 [4] ;
CL= 0.95 - коэффициент, учитывающий влияние длины ремня табл.7.9 [4] ;
CP=1.1 - коэффициент режима работы табл.7.10 [4] ;
Cα = 0.85 - коэффициент угла обхвата [4] стр.135;
Cz = 0.9 - коэффициент, учитывающий число ремней в передаче [4] стр.135;
принимаем z = 4 ремня.
Предварительное натяжение ветвей ремня:
где Θ = 0,3 (Н·с2) /м2 - коэффициент учитывающий центробежную силу [4] стр.136;
ν = 0,5ω1D1=0.5·76.4·0.2 = 7.64 м/с - скорость ремня.
Сила, действующая на вал:
Результаты расчета представлены в таблице 4.1
Таблица 4.1
Тип ремня | В |
Диаметр приводного шкива (мм) | 200 |
Диаметр ведомого шкива (мм) | 710 |
Длина ремня (мм) | 2800 |
Межосевое расстояние (мм) | 634 |
Число ремней | 4 |
Усилие передаваемое на вал (Н) | 1832 |
Для соединения тихоходного вала редуктора с валом барабана выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75.
Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того они допускают некоторые неточности сборки.
Муфту выбираем по расчётному моменту.
Расчётный момент:
MP=kTm = 1.4·1647=2306 Hм
где k = 1.4 - коэффициент режима работы стр.267 [3].
Принимаем муфту МУВП 4000-80-1.1 ГОСТ 21424-75.
Для шестерни ранее принят материал - сталь 40Х.
Для тихоходного вала также принимаем сталь 40Х.
Допускаемые напряжения для предварительного расчёта валов принимаем в соответствии с рекомендациями стр.31 [3] принимаем [τ] к = 25 Н/мм2.
Механические характеристики улучшенной стали 40Х принимаем по таблице 12.7 [3]:
Предел прочности σв= 800 МПа.
Предел текучести σТ= 640 МПа.
Допускаемые напряжения при расчёте на статическую прочность при коэффициенте запаса
n=1.5 [τ] = 640/1.5 =426 МПа.
Конструкция быстроходного вала представлена на Рис.6.1.
Диаметр выходного конца вала:
принимаем стандартное значение d = 40 мм.
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn=d+2tцил = 40 + 2·3,5=47,5 мм
где tцил = 3,5 мм, таблица 3.1 [3].
принимаем стандартное значение dn = 50 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 50 + 3·2.5 = 57.5 мм
где r = 2.5 мм таблица 3.1 [3].
Принимаем dбп = 60 мм.
Длина выходного участка вала в соответствии со стр.48 [3]:
lm=1,5d= 1,5·40 = 60 мм
принимаем lm= 60 мм.
Длина участка вала под подшипник в соответствии со стр.48 [3]:
lk=1,4·dn= 1.4·50 = 70 мм
принимаем lk=70 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
Конструкция тихоходного вала представлена на Рис.6.2.
Диаметр выходного конца вала:
принимаем стандартное значение d = 80 мм.
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn = d+2·tцил = 80 + 2·5.6 = 91.2 мм
где tцил = 5,6 мм таблица 3.1 [3].
принимаем стандартное значение dn = 95 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 95 + 3·4 = 107 мм
где r = 4 мм таблица 3.1 [3].
принимаем dбп = 105 мм.
Диаметр участка вала под колесо:
dk=dбп = 105 мм
Диаметр буртика колеса:
dбк=dк+3f= 105+3·2.5=112.5 мм
где f =2.5 мм таблица 3.1 [3].
принимаем dбк= 115 мм.
Длина выходного участка вала в соответствии со стр.48 [3]:
lм=1.5·d= 1.5·80 = 120 мм
принимаем lм = 120 мм.
Длина участка вала под подшипник в соответствии со стр.48 [3]:
lk=1.4·dn= 1.4·95 = 133 мм
принимаем lk = 140 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
Зазор между поверхностями колёс и внутренними поверхностями стенок корпуса:
принимаем а = 11 мм;
где L= 480 мм - расстояние между внешними поверхностями деталей передач, принято из эскизной компоновки редуктора.
Для быстроходного и тихоходного валов принимаем радиально-упорные шариковые однорядные подшипники по ГОСТ 831-75, такой выбор обосновывается тем, что в косозубой цилиндрической передаче возникают кроме радиальной ещё и
значительные осевые нагрузки, а такой тип подшипников обеспечивает нормальную
работу вала при действии на него одновременно радиальных и осевых нагрузок
Предварительно в качестве опор быстроходного вала принимаем подшипник №46210; для тихоходного вала №46219.
Установка вала требует достаточно надёжной осевой фиксации из-за действия осевой нагрузки. Такую фиксацию обеспечивает схема установки подшипника "враспор". При этом торцы внутренних колец подшипника упираются в буртики выполненные на валу, торцы внешних колец упираются и торцы крышек.
Такая схема установки обеспечивает простоту конструкции, небольшое количество деталей узла, простоту регулировки, которая производится набором прокладок.
Для того чтобы избежать защемления вала в опорах в результате температурных деформаций необходимо предусмотреть зазор между торцом внешнего кольца одного из подшипников и крышкой. После установления нормального температурного режима работы вала зазор исчезает. И в соответствии с рекомендациями [3] стр.38 примем для обоих валов зазор 0,5 мм.
Для составления расчетной схемы используем эскизы валов и предварительную прорисовку редуктора.
Расчетная схема тихоходного вала представлена на рис.7.1. На тихоходный вал действуют силы в зацеплении. В подшипниковых опорах - В и Г возникают реакции опор. Реакции представлены в виде составляющих на оси координат. Определяем реакции в опорах В и Г. Расчёт ведём отдельно для плоскости ZOX и плоскости YOX.
где l4 =60 мм; l5 = 120 мм - приняты из предварительной прорисовки редуктора.
Из суммы моментов всех сил, действующих на в плоскости YOZ относительно опоры B получим:
Из суммы моментов всех сил действующих в плоскости YOZ относительно опоры Г получим:
Из суммы моментов всех сил действующих в плоскости XOZ относительно опоры В получим:
Из суммы моментов всех сил действующих в плоскости XOZ относительно опоры Г получим:
Суммарные реакции опор: