Смекни!
smekni.com

Привод ленточного транспортера, состоящего из электродвигателя, открытой клиноремённой передачи цилиндрического одноступенчатого редуктора и соединительной муфты (стр. 4 из 6)

Как видно наибольшая реакция возникает в опоре Г. По величине этой реакции будем производить проверку долговечности подшипников для тихоходного вала.

7.3.2 Проверка долговечности подшипников

На тихоходный вал принят подшипник №46219. Для данного подшипника динамическая грузоподъёмность С = 98 кН, статическая грузоподъёмность Со = 73 кН. Эквивалентная нагрузка на подшипник:

Рэ= (XVR +YFa) KбKm

где X коэффициент радиальной нагрузки. Определяем по таблице 6.1 [3], для угла контакта 26 градусов, отношения Fa /VR= 3114/1·7835 = 0.4, e=0.68. Так как Fa /VR < e, то X=1, Y=0.92.

V = l - коэффициент учитывающий вращение колец, (стр.103 [3]);

Кб= 1,2 - коэффициент безопасности, принят по таблице 6.3 [3] ;

Кт = 1 - температурный коэффициент, принят по таблице 6.4 [3].

Рэ= (1·1·7835+0.92·3114) ·1.2·1=12840 H

Расчётная долговечность подшипника в часах:

где а23 = 0,7 - коэффициент, характеризующий совместное влияние на ресурс подшипника качества металла колец, тел качения и условий эксплуатации, (стр.105 [3]);

Р = 3 - показатель степени для шариковых подшипников, (стр.105 [3]). Такая долговечность превышает ресурс привода, следовательно, принятый подшипник подходит.

8. Конструирование элементов цилиндрической передачи

Шестерню выполняем как единое целое с валом, размеры этой детали определены ранее.

При мелкосерийном производстве заготовку зубчатого колеса получают свободной ковкой с последующей токарной обработкой. Представленная на рис.8.1 конструкция колеса имеет несложную технологию изготовления, небольшой вес, обеспечивает экономию материала и достаточную несущую способность.

Размеры колеса вычисляем в зависимости от диаметра тихоходного вала под колесо и ширины колеса вычисленных ранее. Расчёт ведём в соответствии с ([3], стр.64).

Диаметр ступицы:

dcm= 1.55dk= 1.55·105 = 162.75 мм

принимаем dcm= 170 мм.

Толщина зубчатого венца:

S = 2.2m + 0.05b2 = 2.2·2 + 0.05·92 = 9 мм

Фаска: f=0.6·m = 0.6·2 = 1.2 мм принимаем в соответствии с табл.4.1 [3] f = 1.2 мм, угол фаски 45°.

Чтобы уменьшить объем точной механической обработки на диске колеса применим выточки.

На диаметр вершин зубьев назначаем поле допуска h11, на диаметр посадочного отверстия назначаем поле допуска Н7, на шпоночный паз поле допуска Js9. Предельные отклонения остальных размеров принимаем: для отверстий HI4, валов h14, остальных ± IT 14/2.

Шероховатость поверхности зубьев Ra1.6, шероховатость посадочной поверхности RaO.80, шероховатость торцовых Рис.8.1. поверхностей колеса Ral6 6, шероховатость остальных поверхностей Ra6.3.

Для того, чтобы ограничить концентрацию контактных давлений на посадочной поверхности колеса назначаем допуск цилиндричности посадочной поверхности колеса 0.12. Для того чтобы создать точную базу для подшипника назначаем допуск перпендикулярности торца колеса 0.04.

9. Расчёт шпонок

Для соединения валов с деталями вращения принимаем шпонки по ГОСТ 23360-78 как наиболее простые по конструкции. Расчёт шпонки сводится к определению напряжения смятия.

Шпонка соединения ведомого шкива и быстроходного вала:

где h = 8мм - высота шпонки; t1 = 5 мм - глубина паза вала; lP=l-b= 50-10 = 40 мм - рабочая длина шпонки; l = 50 мм - длина шпоночного паза; b = 12 мм - ширина шпонки; [σсм] = 140 Н/мм2- допускаемые напряжения смятия для стальной ступицы.

где d = 80 мм - диаметр выходного конца вала; h=14 мм - высота шпонки; t1 = 9 мм - глубина паза шпонки; lP=l-b = 110-22 = 88 мм - рабочая длина шпонки; l=110 мм - длина шпоночного паза; b=22 мм - ширина шпонки; [σсм] = 140 Н/мм2- допускаемые напряжения смятия для стальной ступицы.

Шпонка соединения тихоходного вала и колеса:

где d = 105 мм - диаметр участка вала под колесом; h = 14 мм - высота шпонки; t1 = 9 мм - глубина паза; lP=l-b = 80-22 =118 мм - рабочая длина шпонки; l = 80 мм - длина шпоночного паза; b =22 мм - ширина шпонки; [σсм] = 140 Н/мм2 - допускаемые напряжения смятия для стальной ступицы.

Шпонка соединения тихоходного вала и полумуфты:

где h = 14 мм - высота шпонки; t1= 9 мм - глубина паза вала; lP=l-b =110-22= =88 мм - рабочая длина шпонки; l = 110 мм - длина шпоночного паза; b = 22 мм - ширина шпонки; [σсм] = 140 Н/мм2 - допускаемые напряжения смятия для стальной ступицы.

10. Конструирование шкивов

Конструкцию шкивов ремённой передачи принимаем в соответствии с рис.10.1.Т. к. производство привода крупносерийное шкивы изготавливаем литыми из СЧ-15 ГОСТ 1412-79.

Расчёт размеров ведём в соответствии с таблицей 4.9 [3]. Ширина шкивов:

М= (n-1) e + 2f = (4-1) ·25.5+2·17=110.5 мм

где п = 4 - число ремней; е= 25,5 - шаг ремня; l = 17 - расстояние от кромки шкива до оси первого зуба ремня. Данные приняты в соответствии с ГОСТ 20889-80.

Толщина ободов:

δ = 1.3h = 1.3·14.3 = 18.6 мм

принимаем δ - 19 мм.

где h = 14,3 мм - глубина паза для ремня, принят в соответствии с ГОСТ 20889-80.

Толщина дисков:

С = 1,3 δ = 1.3·19 = 24.7 мм

принимаем С =25 мм.

Диаметры ступиц:

Ведущего шкива:

dстб = 1.55dв = 1.55·48 = 74.4 мм

принимаем dстб = 80 мм

Ведомого шкива:

dстт = 1.55d = 1.55·40 = 62 мм

принимаем dстт = 70 мм

Длины ступиц:

Ведущего шкива:

lстб = 1.55dдв = 1.5·48 = 72 мм

принимаем lстб = 80 мм

Ведомого шкива:

lстт = 1.55d = 1.5·40 = 6 мм

принимаем lстт = 60 мм

Шкивы устанавливаются на валах при помощи шпонок.

11. Уточнённый расчёт валов

11.1 Построение эпюр изгибающих и крутящих моментов

Применяя метод сечений строим эпюры изгибающих моментов в плоскостях XOZ и YOZ. Эпюры представлены на рис.11.1

По эпюрам определяем максимальные значения изгибающих моментов и крутящего момента:

My max = 252780 Нмм

Mx max = 396360 Нмм

Mкр max = 16470000 Нмм

11.2 Проверка статической прочности вала

Для тихоходного вала опасным является сечение под колесом, где действуют максимальные изгибающие моменты в обеих плоскостях.

Геометрические характеристики сечения без учёта шпоночного паза:

Момент сопротивления изгибу:

Момент сопротивления кручению:

Напряжение от изгиба:

Напряжение от кручения:

Эквивалентные напряжения от действия изгиба и кручения:

Расчётные напряжения равные 15,7 МПа не превышают допускаемых равных 426 МПа, условие статической прочности для тихоходного вала выполняется.

11.3 Проверка усталостной прочности тихоходного вала

Расчёт проводим в соответствии с §6.2 [4].

Примем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения - по отнулевому (пульсирующему).

Проверка усталостной прочности состоит в определении коэффициентов запаса прочности s для опасных сечений и сравнении их с требуемыми (допускаемыми) значениями [s] = 2.5 Прочность соблюдена если s ≥ [s].

Производим расчёт для предположительно опасных сечений вала.

Предел выносливости при симметричном цикле изгиба:

σ-1≈ 0.43σв = 0.43·800 = 344 МПа

Предел выносливости при симметричном цикле касательных напряжений:

τ-1≈ 0.58σ-1 = 0.58·360 = 209 МПа

Проверяем сечение со шпоночной канавкой для крепления полумуфты. Канавка вызывает концентрацию напряжений, поэтому сечение будет опасным.

Диаметр вала в этом сечении мм. Для шпоночной канавки (см. табл.6.5 [4]): kσ =1.8 и кτ = 1.7; масштабные факторы εσ= 0.7; ετ=0.7 (см. табл.6.8 [4]); коэффициенты ψω≈0.25 и ψr =0.1 (стр.100 [4]).

Изгибающий момент в горизонтальной плоскости:

My= 0 Нмм

Изгибающий момент в вертикальной плоскости:

Mx= 0 Нмм

Суммарный изгибающий момент:

Момент сопротивления кручению с учётом шпоночного паза:

где b, t1 - размеры шпонки соединяющей тихоходный вал и ступицу полумуфты (см. расчёт шпонок).

Амплитуда и среднее напряжение цикла касательных напряжений: