Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.
Результаты расчёта передачи на прочность представлены в табл.3.6.1
Таблица 3.6.1
Расчётные напряжения | Допускаемые напряжения | |||
Быстроходная ступень | Расчёт на контактную усталостную прочность | 864 | 875 | |
Расчёт на усталостную изгибную прочность | Шестерня | 41,7 | 382 | |
Колесо | 36,7 | 382 | ||
Тихоходная ступень | Расчёт на контактную усталостную прочность | 722 | 875 | |
Расчёт на усталостную изгибную прочность | Шестерня | 34,9 | 382 | |
Колесо | 30,8 | 382 |
Для шестерни ранее принят материал - сталь 40Х.
Для тихоходного вала также принимаем сталь 40Х.
Механические характеристики улучшенной стали 40Х
Предел прочности σв= 800 МПа.
Предел текучести σТ= 640 МПа.
Допускаемые напряжения при расчёте на статическую прочность при коэффициенте запаса
n=1.5 [τ] = 640/1.5 =426 МПа.
Диаметр выходного конца вала:
принимаем стандартное значение d = 40 мм.
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn=d+2tкон = 40 + 2 · 2,3=44,6 мм
где tкон = 2,3 мм,
принимаем стандартное значение dn = 45 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 45 + 3 · 2,5 = 52,5 мм
где r = 2,5 мм
Принимаем dбп = 53 мм.
Длина выходного участка вала:
lm=1, 5 · d= 1,5 · 40 = 60 мм
принимаем lm= 60 мм.
Длина участка вала под подшипник:
lk=1,4 · dn= 1,4 · 45 = 63 мм
принимаем lk=65 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
Диаметр вала под колесо:
принимаем стандартное значение dК = 60 мм.
Диаметр буртика колеса:
dбк=dк+3f= 60 + 3 ·2=66 мм
Диаметр вала под подшипник:
dn = dк+3r = 60 - 3 ·3,5=49,5 мм
принимаем стандартное значение dп= 50 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 50 + 3 · 3,5 = 60 мм
Диаметр выходного конца вала:
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn = d + 2 · tкон = 70 + 2 · 2,5 = 75 мм
где tкон = 2,5 мм.
принимаем стандартное значение dn = 75 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 75 + 3 · 3,5 = 85,5 мм
где r = 3,5 мм.
принимаем dбп = 86 мм.
Диаметр участка вала под колесо:
dk=dбп = 86 мм
Диаметр буртика колеса:
dбк=dк+3f= 86 + 3 ·2,5=93,5 мм
где f =2,5 мм.
принимаем dбк= 95 мм.
Длина выходного участка вала:
lм=1,5 · d= 1,5 · 70 = 105 мм
принимаем lм = 105 мм.
Длина участка вала под подшипник:
lk=1,.4 · dn= 1,4 · 85 = 119 мм
принимаем lk = 120 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
Расстояние между деталями передач
Зазоры между колесами и внутренними поверхностями стенок корпуса:
Принимаем а = 12 мм;
Расстояние между дном корпуса и поверхностью колес:
Расстояние между торцовыми поверхностями колес:
Принимаем 6 мм;
где L ≈ 670 мм - расстояние между внешними поверхностями деталей передач, принято из эскизной компоновки редуктора.
Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того, они допускают некоторые неточности сборки.
Для соединения быстроходного вала редуктора с валом электродвигателя выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75.
Принимаем муфту МУВП 250-40-1 У3 ГОСТ 21424-93.
Номинальный крутящий момент Мкр., Н×м = 250
Частота вращения, об/мин, не более = 4600
Смещение валов, не более:
радиальное = 0,3
угловое = 1°00¢
Для соединения тихоходного вала редуктора с валом барабана выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75.
Принимаем муфту МУВП 4000-70-1 У3 ГОСТ 21424-93.
Номинальный крутящий момент Мкр., Н×м = 4000
Частота вращения, об/мин, не более = 1800
Смещение валов, не более:
радиальное = 0,5
угловое = 0°30¢
Для всех валов принимаем радиальные шариковые однорядные подшипники по ГОСТ 8338-75, такой выбор обосновывается тем, что в прямозубой цилиндрической передаче возникают только радиальные осевые нагрузки, такой тип подшипников обеспечивает нормальную работу вала при действии на него радиальных нагрузок.
Предварительно в качестве опор быстроходного вала принимаем подшипник №309; для промежуточного вала №310; для тихоходного вала №315.
Установка валов не требует достаточно надёжной осевой фиксации из-за отсутствия действия осевой нагрузки. Такую фиксацию обеспечивает схема установки подшипника "враспор". При этом торцы внутренних колец подшипника упираются в буртики выполненные на валу, торцы внешних колец упираются и торцы крышек.
Такая схема установки обеспечивает простоту конструкции, небольшое количество деталей узла, простоту регулировки, которая производится набором прокладок.
Для того чтобы избежать защемления вала в опорах в результате температурных деформаций необходимо предусмотреть зазор между торцом внешнего кольца одного из подшипников и крышкой. После установления нормального температурного режима работы вала зазор исчезает. И в соответствии с рекомендациями примем для обоих валов зазор 0,5 мм.
Для составления расчетной схемы используем эскизы валов и предварительную прорисовку редуктора.
Расчетная схема тихоходного вала представлена на Рис.6.3.1 На тихоходный вал действуют силы в зацеплении. В подшипниковых опорах - А и Б возникают реакции опор. Реакции представлены в виде составляющих на оси координат.
Определяем реакции в опорах А и Б. Расчёт ведём отдельно для плоскости ZOX и плоскости YOX.
Где l1 =126,5 мм; l2 = 70,5 мм l3 = 154 мм - приняты из предварительной прорисовки редуктора.
В связи с возможной неточностью установки валов (перекос, несоосность) на муфте будет действовать дополнительная сила:
Fм =
Составляем уравнения суммы моментов всех сил, относительно точек А и Б
т. А
в плоскости YOZ
в плоскости XOZ
т. Б
в плоскости YOZ
в плоскости XOZ
Из суммы моментов всех сил, действующих в плоскости YOZ относительно опоры А получим:
Из суммы моментов всех сил действующих в плоскости YOZ относительно опоры Б получим:
Из суммы моментов всех сил действующих в плоскости XOZ относительно опоры А получим:
Из суммы моментов всех сил действующих в плоскости XOZ относительно опоры Б получим:
Суммарные реакции опор:
Как видно наибольшая реакция возникает в опоре Б. По величине этой реакции будем производить проверку долговечности подшипников для тихоходного вала.
На тихоходный вал принят подшипник №315. Для данного подшипника динамическая грузоподъёмность Сr = 89000 Н, статическая грузоподъёмность Соr = 72000 Н.
Проверка на статическую грузоподъемность: