Тип – ЦНС -105-196.
Производительность – 105 м³/час
Напор –196 м вод.ст.
Дренажные насосы предназначены для откачки воды из дренажного приямка.
Дренажный насос ст. № 1
Тип – ЦНС -3
Производительность –36,4 м³/час
Напор –15,9 м вод.ст.
Шламовый водоструйный насос № 2
Производительность – 30 м³/час
Напор –6 м вод.ст.
Дренажный насос ст. № 3 –водоструйный эжектор.
Оборудование насосной осветленной воды.
1. Насосы осветленной воды ст. №№ 1; 2; 3 предназначены для подачи осветленной воды на ТЭЦ, для повторного использования в системе гидрозолоудаления.
Тип насосов – 300Д90
Производительность – 900 м³/час
Напор –18 м вод.ст.
Электродвигатель асинхронный,тип А-272-6
Мощность – 100 квт
2. Дренажные насосы №№ 1; 2.
Тип ВКС-5/24
Производительность – 8,5-18,4 м³/час
Напор – 10-20 м вод.ст.
Схема работы гидрозолоудаления багерной насосной № 1.
Гидросмесь из котельного отделения поступает в багерную по каналу, расположенному в сточном проходном тоннеле. Перед входом в багерную канал разделяется на два канала (к колодцам №№ 1; 2). Переключение на колодцы производится путем перевода поворотной шандоры.
Кроме того на каждом колодце имеется своя запорная шандора. За запорной шандорой поперек канала сделано углубление, являющееся предварительным железоуловителем.
После предварительного железоуловителя гидросмесь поступает в приемный колодец. Поперек приемного колодца установлена наклонная решетка с ячейками шириной 20 мм.
Приемный колодец соединяется с буферным колодцем амбразурой, расположенной на высоте 2300 мм от пола багерной.
Если в приемный колодец поступило больше смеси чем откачивается багерными насосами, то гидросмесь через амбразуру заполняет буферный колодец. При нормальной работе следует поддерживать уровень гидросмеси на 1,5- 2 м выше дна колодца.
Золопроводы и золоотвал № 2.
Золоотвал ТЭЦ является ответственным гидротехническим сооружением, аварии которого могут привести к тяжелым последствия не только для станции, но и для объектов народного хозяйства и населенных пунктов, расположенных вблизи золоотвала.
Золоотвал № 2 «новый» расположен к северу от ТЭЦ-1в урочище Казак-Чекан на расстоянии 9,5 км. Высота подачи воды -108 м над площадкой ТЭЦ. Емкость наполнения золоотвала 4 млн. м³.
В эксплуатации находится с 1983 года. Максимальная высота ограждающей дамбы 36 м.
Площадь золоотвала -42 га. Золоотвал овражного типа.
Гребень ограждающей дамбы на отметке 308,0 м. Ширина дамбы -10 м.
Для возможности аварийных сбросов воды при сильных наводнениях (паводках) предусмотрен аварийный водосброс.
Максимальный уровень воды золоотвала -295 см.
Аварийный сброс при уровне -298 см.
Для контроля за осадками и смещениями дамбы золоотвала установлена сеть поверхностных и глубинных реперов.
От багерной насосной № 2 до золоотвала № 2 проложено три золопровода диаметром 426 мм. Протяженность трассы – 6,5 км
От золоотвала № 2 до насосной осветленной воды проложен железобетонный канал, протяженностью 70 м.
Трубопровод осветленной воды Ø 530 мм от насосной осветленной воды до ТЭЦ протяженность трассы -10 км.
10. ХАРАКТЕРИСТИКА ИНФОРМАЦИОННОЙ СЕТИ ТЭЦ
Информационная опорная сеть ОТЭЦ – 1 строится на основе 7-ми подсистем:
· первичные каналы сети связи;
· узлы связи;
· комплекс распределённого контроля и управления агрегатами и информационной сетью;
· система архивирования информации и обеспечение бесперебойного питания;
· информационные серверы коллективного пользования;
· интеграция с российскими сетями;
· универсальная система подключения абонентской компьютерной техники;
Первичные каналы связи строятся на основе одномодового оптоволоконного кабеля по топологии "звезда" с центром на стационарной АТС.
Система распределённого контроля и управления Информационной Опорной Сетью представляет собой программно-аппаратный комплекс с центром управления в здании АТС.
Для организации бесперебойного электропитания информационой сети используется распределённая система гарантированного электропитания.
Информационные серверы коллективного пользования - это специально организованные информационные ресурсы Опорной Сети, к которым обеспечен доступ абонентов с многоуровневой системой регистрации.
В качестве поставщика услуг Internet, обеспечивающего доступ к российским и мировым ресурсам используется АО "ВолгаТелеком" г. Орск.
Для организации связи между узлами телекоммуникационной распределённой сети связи используются современные оптические каналы связи, которые позволяют построить магистраль передачи данных на территории предприятия.
Служебный входной оптический шкаф расположен внутри здания АТС, в котором заканчиваются кабели, введённые в здание снаружи.
Для информационной опорной сети из общего магистрального многожильного оптического кабеля выделено два одномодовых волокна, один из которых служит для приёма информации, другой для передачи.
Для подключения активного оборудования информационной опорной сети используется оптический одномодовый кабель для внутренней прокладки, который приварен к магистральному кабелю и оканчивается стандартным ST коннектором. Кабель для внутренней проводки закреплён по всей длине стяжками к направляющим конструкциям и входит в распределительный шкаф. Для работоспособности сети в целом, необходимо, чтобы по всей длине оптического кабеля затухание было не более 0,4 Дб/км. Передача информации по одномодовым оптическим волокнам производится на длинах волн 1,3 и 1,55 мкм.
В качестве каналообразующего оборудования используются трансиверы фирмы Nbase NX300, которые передают оптический сигнал на расстояние до 10 км при затухании не более 0,4 Дб/км. Они предназначены для подключения оборудования Ethernet с разъёмом AUI в одномодовую волоконнооптическую линию связи. Протокол передачи информации - Ethernet CSMA-CD. Трансиверы имееют режим работы как полудуплекс (10Мб/сек), так и полный дуплекс (20Мб/сек).
На такой электростанции, как ОТЭЦ – 1, входящей в энергосистему, должно осуществляться непрерывное круглосуточное регулирование текущего режима работы по частоте и перетокам активной мощности, обеспечивающее:
исполнение заданных диспетчерских графиков активной мощности;
поддержание частоты в нормированных пределах;
поддержание перетоков активной мощности в допустимых диапазонах, исходя из условий обеспечения надежности функционирования энергосистем, объединенных и единой энергосистем;
корректировку заданных диспетчерских графиков и режимов работы, объединенных и единой энергосистем при изменении режимных условий.
Регулирование частоты и перетоков активной мощности должно осуществляться совместным действием систем первичного (общего и нормированного), вторичного и третичного регулирования.
Общее первичное регулирование частоты должно осуществляться всеми электростанциями путем изменения мощности под воздействием автоматических регуляторов частоты вращения роторов турбоагрегатов и производительности котлов, реакторов АЭС и т. п.
Нормированное первичное регулирование частоты должно обеспечиваться выделенными электростанциями. На ТЭЦ - 1 размещается необходимый первичный резерв. Параметры и диапазон нормированного первичного регулирования задаются соответствующими органами диспетчерского управления.
Вторичное регулирование (в целом по единой энергосистеме и в отдельных регионах) осуществляется с целью поддержания и восстановления плановых режимов по частоте и перетокам активной мощности.
Вторичное регулирование осуществляется оперативно либо автоматически (с использованием систем автоматического регулирования частоты и перетоков мощности - АРЧМ) выделенными для этих целей электростанциями, на которых должен поддерживаться необходимый вторичный резерв активной мощности.
Использование системы автоматического управления и режимов работы, препятствующих изменению мощности при изменениях частоты (ограничители мощности и регуляторы давления «до себя» на турбинах, режим скользящего давления при полностью открытых клапанах турбин, регуляторы мощности без частотной коррекции, отключение регуляторов мощности или устройств автоматического регулирования производительности котельных установок) допускается только временно при неисправности основного оборудования или систем автоматического регулирования.
После изменения мощности, вызванного изменением частоты, персонал электростанции должен принять необходимые меры для выполнения требований участия в первичном регулировании частоты. При снижении частоты ниже установленных значений диспетчер единой энергосистемы России или изолированно работающей (аварийно отделившейся) объединенной энергосистемы (энергосистемы, энергорайона) должен ввести в действие имеющиеся резервы мощности.
Регулирование параметров тепловых сетей должно обеспечивать поддержание заданного давления и температуры теплоносителя в контрольных пунктах.
Допускается отклонение температуры теплоносителя от заданных значений при кратковременном (не более 3 ч) изменении утвержденного графика, если иное не предусмотрено договорными отношениями между энергосистемой и потребителями тепла.
Регулирование в тепловых сетях осуществляется автоматически или вручную путем воздействия на:
работу источников и потребителей тепла;
гидравлический режим тепловых сетей, в том числе изменением перетоков и режимов работы насосных станций и теплоприемников;
режим подпитки путем поддержания постоянной готовности водоподготовительных установок теплоисточников к покрытию изменяющихся расходов подпиточной воды.