Смекни!
smekni.com

Проектирование абсорбционной установки (стр. 4 из 6)

Клапанные тарелки. Принцип действия состоит в том, что свободно лежащий над отверстием в тарелке круглый клапан с изменением расхода газа своим весом автоматически регулирует величину площади зазора между клапаном и плоскостью тарелки для прохода газа и тем самым поддерживает постоянной скорость газа при его истечении в барботажный слой. При этом с увеличением скорости газа в колонне гидравлическое сопротивление клапанной тарелки увеличивается незначительно.

Балластные тарелки. Отличаются по устройству от клапанных тем, что в них между легким круглым клапаном и кронштейном-ограничителем установлен на коротких стойках, опирающихся на тарелку, более тяжелый, чем клапан, балласт. Клапан начинает подниматься при небольших скоростях газа. С дальнейшим увеличением скорости газа клапан упирается в балласт и затем поднимается вместе с ним. Балластные тарелки отличаются более равномерной работой и полным отсутствием провала жидкости во всем интервале скоростей газа.

Достоинства клапанных и балластных тарелок: сравнительно высокая пропускная способность по газу и гидродинамическая устойчивость, постоянная и высокая эффективность в широком интервале нагрузок по газу. Последнее достоинство является особенностью клапанных и балластных тарелок по сравнению с тарелками других конструкций. К недостаткам этих тарелок следует отнести их повышенное гидравлическое сопротивление, обусловленное весом клапана или балласта.

Пластинчатые тарелки. Эти тарелки, в отличие от тарелок, рассмотренных выше, работают при одноправленном движении фаз, то есть каждая ступень работает по принципу прямотока, что позволяет резко повысить нагрузки по газу и жидкости, в то время как колонна в целом работает с противотоком фаз. Достоинства пластинчатых тарелок: низкое гидравлическое сопротивление, возможность работы с загрязненными жидкостями, низкий расход металла при их изготовлении. Недостатки: трудность отвода и подвода тепла, снижение эффективности при небольших расходах жидкости.

3 Описание процесса в технологической системе

Бинарная газовая смесь с температурой 160

(поток 4,9) подается турбокомпрессорами в теплообменник 9, где охлаждается до температуры 35
. Охлажденная смесь подается газодувкой 8 в нижнюю часть абсорбера 6, где равномерно распределяется по сечению колонны и поступает на контактные элементы (насадку). Абсорбент подается в верхнюю часть колонны центробежным насосом 4 из сборника 3. В колонне осуществляется противоточное взаимодействие газа и жидкости. Очищенный газ выходит из колонны в атмосферу. Абсорбент стекает через гидрозатвор в сборник 7, откуда насосом 5 отправляется на дальнейшую переработку. Для охлаждения газа в холодильник из градирни 2 подается насосом 1 вода, которая после холодильника возвращается на охлаждение в градирню. Схема автоматизирована. Цель системы автоматического регулирования определяется назначением процесса: очистка газа, поступающего в абсорбер или получение готового продукта. В данной работе рассматривается первая задача, в соответствии с которой основными регулируемыми параметрами являются: концентрация извлекаемого компонента в газовой смеси на выходе из абсорбера; температура газовой смеси, поступающей на абсорбцию; уровень жидкости в абсорбере.

В большинстве случаев расход газовой смеси определяется технологическим режимом, то есть абсорбционная установка должна переработать весь поступающий поток газа. Поэтому, например, при увеличении количества подаваемой в абсорбер газовой смеси возрастает концентрация извлекаемого компонента в газовой смеси на выходе из абсорбера. При помощи регулятора концентрации увеличивается подача абсорбента в абсорбер, что обеспечивает стабилизацию концентрации компонента в газовой смеси на выходе из абсорбера. Для оптимизации процесса абсорбции поддерживается низкая температура газовой смеси, поступающей в абсорбер, путем изменения расхода охлаждающей воды, подаваемой в холодильник газа 9. Уровень жидкости в колонне стабилизируется путем изменения отбора жидкости из неё. Системой автоматизации предусмотрена стабилизация уровней жидкости в сборниках. В процессе абсорбции при помощи КИП контролируются расходы, температуры, давления технологических потоков.


4. Технологический расчет

4.1 Построение кривой равновесия и рабочей линии процесса

Для определения числа теоретических единиц переноса необходимо в системе координат построить рабочую линию и линию равновесия.

По начальным и конечным концентрациям поглощаемого газа и поглотителя строим рабочую линию, т.е. прямую, которая проходит через точки с координатами (

,
) и (
,
). Она расположена выше линии равновесия, т.к. при абсорбции содержание компонента в газовой фазе выше равновесного.

Выразим начальную и найдем конечную концентрации газовой фазы в единицах массовой концентрации; для этого переведём мольные доли в массовые, воспользовавшись формулой (2.1).

(2.1),

масс долей

Используя формулу (2.2), переведём массовые доли в относительные массовые доли.

(2.2),

относит масс долей


По формуле (2.3) определим концентрацию газа на выходе из абсорбера колонны.

(2.3),

относит масс долей

Для построения кривой равновесия задаём значения “

” так, чтобы принятые значения включали в заданный интервал
и
. Значения указаны в таблице 1.

Таблица 1

y1 y2 y3 y4 y5 y6 y7
0.120 0.103 0.086 0.069 0.052 0.035 0.018

Для каждого принятого значения “

” принимаем температуру (в зависимости от температуры в абсорбере). Данные указаны в таблице 2.

Таблица 2

t, оС 20 25 30 35 40 45 50
Eатм 482,894 544,736 602,210 676,315 744,736 815,789 886,842

Пользуясь формулой (2.4) определяем для каждого значения “

” парциальное давление компонента в парах над жидкостью.

(2.4),

атм

атм

атм

атм

атм

атм

атм

Для каждого значения “

” (концентрация компонента в газовой смеси) определим равновесное значение “
” (концентрация компонента в поглотителе). Для определения используем формулу (2.5).

(2.5),

относит масс долей

относит масс долей

относит масс долей

относит масс долей

относит масс долей

относит масс долей


По значения “

” и “
” строим линию равновесия.

В зависимости от степени поглощения газа поглотителем строим рабочую линию. Используя значения

,
,
и
. Значения
и
определим по формулам (2.6) и (2.7).