Смекни!
smekni.com

Проектирование диспетчерского центра котельных установок (стр. 5 из 14)

Основные параметры и характеристики представлены в рисунке 2.2.2

На рисунке 2.2.3 представлена схема 8-канального аналогового ввода

Рис. 2.2.3 схема 8-канального аналогового ввода


б. Плата дискретного ввода-вывода

Рис. 2.2.4 Характеристики платы дискретного ввода

Основные параметры и характеристики представлены в таблице 2.2.4.

На рисунке 2.2.5 представлена схема 8-канального дискретного ввода

Рис. 2.2.5 схема 8-канального дискретного ввода

Возможна поставка различных клеммных блоков в/в, соответствующих конкретным функциональным требованиям и внешним условиям. Используемые вместе клеммные блоки и платы в/в снабжены ключами функциональной и электрической защиты, которые гарантируют, что только работающие вместе плата и клеммный блок могут подключаться друг к другу. Клеммные блоки могут для ускорения монтажа системы устанавливаться и подключаться отдельно от плат. Для тех полевых устройств, которые расположены во взрывобезопасных зонах, или для дискретных полевых устройств, которым требуется больший ток, чем максимальный выдерживаемый платой, предоставляется групповой клеммный блок с 10, 16 или 24-контактами для соединения с промежуточными панелями. Низкоуровневые сигналы проводятся по ленточному кабелю 0,093 мм2 (28 по AWG . Американскому сортаменту проводов) или круглому измерительному кабелю. Для полевых устройств, требующих внешнего питания, может поставляться клеммный блок в/в, предназначенный для 4-проводных устройств. Такой клеммный блок в/в используется вместе с платой аналогового ввода 4-20 мА. В нашем случае производится заказ специальной платы поддерживающей протокол MLink.

2.3 Выбор и описание датчиков

В данной котельной установке используется несколько типов датчиков.

Рассмотрим подробнее каждый из них

а. Датчик давления

Датчики производства фирмы «Метран» Метран-55

Рассмотрим основные характеристики и параметры датчика

Рис. 2.3.2 Характеристики и параметры датчика


б. Датчик температуры

В данном случае используется два вида датчиков температур.

Рис. 2.3.3 Рис 2.3.4

Первый тип датчиков (рис. 2.3.3) необходим для вмонтирования в материал, в нашем случае в печь.

Основные характеристики представлены на рисунке 2.3.5

Рис. 2.3.5 Основные характеристики датчика TXA/TXK-0292

Второй вид датчиков (рис. 2.3.4) необходим для монтажа в трубы

Основные характеристики представлены на рисунке 2.3.6


Рис. 2.3.6 Основные характеристики датчика TXA/TXK-0192

2.4 Синтез системы управления котельной установкой

По заданной функциональной схеме составим структурные схемы исходной системы. Определим передаточные функции звеньев.

Таблица 2.1 Определение передаточной функции звеньев

Название звена Передаточная функция
Формула Расчёт
Задвижка WЗ(р)=
WЗ(р)=
Котел Wк(р)=
WК(р)=

WИСХ = Wз*Wк =

=
(2.1)

Проверим исходную систему на устойчивость, т. е. получим график переходного процесса (рис. 2.4.1):


Рис. 2.4.1

Из рисунка видно, что переходный процесс является расходящимся, следовательно исходная система неустойчива и требует регулирования.

Первый контур регулирования

Рис.2.4.2

КТ = 0.08/8 = 0.01 ,(2.2)

Найдем исходную ПФ 1 контура

WИСХ1(p)= Wз*Wк *КТ, (2.3)

WИСХ1(р) =

0.01 =
, (2.4)

Будем настраивать внутренний контур на технический оптимум.

При настройке на технический оптимум желаемая передаточная функция имеет вид

Wж1(р)=

(2.5)

С другой стороны WЖ1 (р)= Wрег1(р)* Wисх1(р), следовательно

Wрег1(р)=

(2.6)

Wрег1(р)=

, (2.7)

Выполним проверку. Найдем желаемую ПФ замкнутой системы

(2.8)

Найдем ПФ замкнутого первого контура

Ф1(S)=

=
, (2.9)

Для дальнейших расчетов примем

Ф1(S) ≈

, (2.10)

Расчеты выполнены верно:

Ф1(S) = ФЖ1 (S).

Найдем ПФ замкнутой и разомкнутой системы

Wраз=Ф3*

, (2.11)

, (2.12)

Проверим систему на устойчивость, т. е. получим график переходного процесса (рис.2.4.3):

Рис. 2.4.3

Из рисунка видно, что время переходного процесса равно 0.8 сек, следовательно рассчитанный регулятор подходит для данной системы и система является устойчивой.


2.5 Реализация корректирующих устройств на регуляторах

МЕТОДИКА СИНТЕЗА ЦИФРОВОГО РЕГУЛЯТОРА

В связи с тем, что контроллер, используемый в системе управления ТП, работает дискретно, то и регуляторы должны быть представлены в дискретном виде (аппроксимация Тустена или Z - преобразования ).

Существуют различные методы синтеза цифровых регуляторов, основанные на теории Z - преобразования и пространства состояний. Эти методы требуют очень громоздких математических преобразований и используются в особо точных системах управления.

Рассмотрим более простой подход, состоящий в предварительном синтезе непрерывных регуляторов известными методами теории автоматического регулирования для непрерывных систем и последующем переходе к цифровому регулятору, эквивалентному синтезированному аналоговому.

Задача переоборудования аналоговых регуляторов решается как задача аппроксимации передаточной функции данного регулятора дискретной передаточной функцией цифрового регулятора.

В инженерной практике наибольшее применение нашла аппроксимация, полученная на основе билинейного преобразования или аппроксимация Тустена.

Согласно этой аппроксимации

;
, (2.13)

где Т - интервал дискретизации по времени

Однако, этим методом можно пользоваться только тогда, когда интервал дискретизации по времени для цифровой системы Т мал по сравнению с самой малой постоянной времени системы управления Тm. Согласно теореме Котельникова - Шеннона непрерывный сигнал достаточно точно восстанавливается по совокупности его дискретных значений, если

Т £ 0,5 Тm.. (2.14)

На практике рекомендуется иметь больший коэффициент запаса

Т £ ( 0,1 - 0,2 ) Тm.(2.15)

Определим период дискретизации (Т): это обратная величина от частоты контроллера, но лучше взять частоту АЦП, которая в нашем случае равна 48КГц=48000Гц. Выбор частоты АЦП связан с тем, что скорость обработки информации в первую очередь зависит от скорости работы АЦП.

, (2.16)

Проверим соблюдение условия (теорема Котельникова - Шеннона)

Т £ 0,5 Тm.. (2.17)

0.00001 £ 0,5*0.02, (2.18)

0.00001 £ 0.01, (2.19)

Условие соблюдается, следовательно период дискретизации выбран правильно.

Произведем перевод полученных регуляторов в дискретные.

Синтез цифровых регуляторов по средствам программы MatLab


Wрег1(р) =

, (2.20)

Wрег1(z) =

, (2.21)

3. Создание диспетчерского центра

В настоящее время в поселке Варламово в эксплуатации находятся две котельные установки и еще одна готовится к пуску в этом году. Такое количество полностью перекрывает нужду населения и учреждений. В данной дипломной работе мы рассмотрим создание единого диспетчерского центра для котельных установок. Создание такого центра обусловлено техническим заданием руководства УЖКХ, для того чтобы иметь постоянный контроль за процессом работы котельных установок в режиме реального времени. Диспетчерский центр должен находиться в здании УЖКХ п. Варламово.