БЕЛГОРОДСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ
Инженерный факультет
Кафедра общетехнических дисциплин
Расчетно-пояснительная записка
К курсовому проекту по ТММ
на тему: «Проектирование и исследование механизма качающегося конвейера»
Задание 16 Вариант
Выполнил студент: инженерного
факультета 2-го курса 21 (1 ) гр.
Проверил: доцент Слободюк А.П.
БЕЛГОРОД 2004
ВВЕДЕНИЕ
Механизм привода конвейера предназначен для осуществления возвратно-поступательного движения ползуна для перемещения лотка или ленты с транспортируемым материалом. Для осуществления сепарирования и перемещения материала характер движения ползуна конвейера должен быть различным в обе стороны.
Кривошип 1 механизма приводится от электродвигателя через редуктор и совершает вращательное движение. Далее, через шатун 2 движение передается на коромысло 3, которое при работе механизма совершает качающееся движение относительно оси D.
Затем, через шарнир С, движение передается на шатун 4, совершающий сложное движение. Шатун 4 соединен с ползуном 5 – лотком конвейера. Ползун, совершая возвратно-поступательное движение, позволяет выполнять рабочий процесс.
В целом механизм привода конвейера можно отнести к исполнительным механизмам технологической машины.
1. СТРУКТУРНОЕ И КИНЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ
РЫЧАЖНОГО МЕХАНИЗМА
1.1. Структурный анализ рычажного механизма
Степень подвижности механизма определим по формуле Чебышева
W = 3n - 2p1 - p2 ,
где n - число подвижных звеньев, p1 - число одноподвижных кинематических пар, p2 - число двухподвижных кинематических пар.
В рассматриваемом механизме 5 подвижных звеньев (т.е. n = 5), и все кинематические пары одноподвижные (т.е. p1=7, p2=0). Тогда
W = 3·5 - 2·7 = 1.
Так как подвижность механизма получена отличной от нуля, то механизм работоспособен.
Разбиваем механизм на группы Ассура: группа II класса 1-го порядка (шатун 2 - коромысло 3) и группа II класса 2-го порядка (шатун 4 - ползун 5) [2].
Структурная формула механизма I(0-1) – II1(2-3) – II2(4-5)
В целом механизм является механизмом II класса.
1.2. Построение кинематической схемы
Построение кинематической схемы начинаем с разметки неподвижных опор рычажного механизма. Принимаем на чертеже масштабный коэффициент схемы ml = 0.004 м/мм. В принятом масштабе
LОА = ОА/ml = 0.11/0.004 = 27.5 мм
За нулевое принимаем такое положение механизма, при котором ползун 5 занимает крайнее левое положение (в соответствии с условием). При этом шатун АВ находится на одной прямой с кривошипом ОА (см. лист 1 графической части). В этом положении достраиваем кинематическую схему в выбранном масштабе.
Разбиваем траекторию движения точки А кривошипа на 12 равных дуг, начиная от нулевого положения и в каждом из этих положений выстраиваем кинематическую схему механизма. Строим кинематическую схему во втором крайнем положении. Положение конца рабочего хода определяет точка Акрх. Рабочий ход составляет φрх= 210º = 3.67 рад.
1.3. Построение планов скоростей
Построение плана скоростей начинаем от входного звена - кривошипа ОА. Угловая скорость кривошипа ω1 =16 1/с. Скорость точки А
VA = ω1·ОА = 16×0,14 = 2,24 м/с
Из точки р, принятой за полюс плана скоростей (см. лист 1), откладываем в направлении вращения кривошипа 1 вектор ра = 56 мм скорости точки А, принадлежащей кривошипу.
Масштабный коэффициент плана скоростей
μv = VA/ра = 2,24/56 = 0,04 м/с/мм
План скоростей для группы Ассура (2-3) строим, графически решая систему векторных уравнений
VА3 = VA + VВA
VВ = VС + VВС
В этой системе VВ обозначен вектор скорости точки В, принадлежащей шатуну 2; VВA - вектор относительной скорости точки В относительно точки А. VВС - вектор относительной скорости точки В относительно точки С. Также имеем VС = 0 (так как в точке С находится опора), VВA┴AВ , VВС║ВС.
Построение. Из точки а плана проводим линию, перпендикулярную шатуну AВ - направление VВA. Из полюса р (поскольку VС = 0) проводим линию, перпендикулярную кривошипу 3 - направление VВD. Точка b пересечения этих линий дает конец вектора искомой скорости VB.
Чтобы построить план скоростей для группы Ассура (звенья 4-5), необходимо найти скорость точки D коромысла из условия подобия
VD/VB = СD/BС,
или, учитывая, что масштабный коэффициент μv остается постоянным,
pd/рb = СD/ВС .
Например, для положения 2 (φ1 = 60º)
pd = pb·СD/BС = 55.54·0.35/0.25 = 77.76 мм .
Вектор VD выходит из полюса p, параллелен вектору рb и направлен в ту же сторону (т.к. точка В – шарнир, в котором прикрепляется шатун 2 – лежит между точкой D и неподвижной опорой С коромысла).
Для группы Ассура (4-5) составляем систему векторных уравнений
VE = VD + VED
VE = горизонталь ,
где VED ^ ЕD – относительная скорость точки Е вокруг D.
Через точку d плана проводим линию, перпендикулярную звену ЕD. Через полюс p проводим линию, направленную горизонтально. Точка е пересечения этих линий дает точку конца вектора скорости VE. Вектор pе представляет вектор скорости любой точки ползуна 5 (т.к. ползун 5 совершает поступательное движение).
Чтобы определить скорость любой точки звена механизма, необходимо, исходя из подобия, найти соответствующую точку на одноименном отрезке плана скоростей и из полюса в эту точку провести вектор, который и будет вектором скорости данной точки.
Например, для положения 2 (φ1=60º) определим скорости точек Si (точки центров масс звеньев, расположенные по условию на звеньях):
VS4 = ps4·μv = 70.4·0.0088 = 0.62 м/с.
VS5 = VD = pd·μv = 65.3·0.0088 = 0.57 м/с.
Сводим определенные из планов величины скоростей точек S2, S3 , S4 и точки S5, принадлежащей ползуну, в таблицу 1.1.
Чтобы определить угловые скорости звеньев 2, 3, 4 необходимо величины относительных скоростей точек в относительном движении разделить на длины соответствующих звеньев.
Например, для положения 2 (φ1=60º):
ω3 = VВС/ВС = pc·μv /ВС = 0.04/0.14= 17.1 1/с.
ω4 = VCD/CD = cd·μv /CD = ·0.04 /0.57 = 2.98 1/с.
Для остальных положений вычисления аналогичны. Результаты сведены в таблицу 2.1.
Таблица 2.1 Линейные скорости центров масс и угловые скорости звеньев
Поло- жение | φ1, рад | Линейные скорости, м/с | Угловые скорости, 1/с | |||||
VS2 | VS3 | VS4 | VS5 | ω2 | ω 3 | ω 4 | ||
0 | 0 | 2.24 | 0 | 1.12 | 0 | 0 | 16.00 | 3.93 |
1 | π/4 | 2.24 | 0 | 1.20 | 0.88 | 0 | 12.43 | 2.40 |
2 | π/2 | 2.24 | 0 | 1,47 | 1,39 | 0 | 11,33 | 0,87 |
3 | 3π/4 | 2.24 | 0 | 1,59 | 1,63 | 0 | 11,28 | 0,68 |
4 | π | 2.24 | 0 | 1,43 | 1,39 | 0 | 12,20 | 2,21 |
5 | 5π/4 | 2.24 | 0 | 1,09 | 0,26 | 0 | 15,28 | 3,73 |
крх | 2.24 | 0 | 1,12 | 0 | 0 | 16,0 | 3,93 | |
6 | 3p/2 | 2.24 | 0 | 2,93 | 2,91 | 0 | 24,01 | 16,33 |
7 | 7p/4 | 2.24 | 0 | 2,94 | 2,56 | 0 | 25,35 | 3,48 |
1.4. Построение планов ускорений
Рассмотрим построение плана ускорений для положения 1(φ1=45º).
Ускорение точки А определится как