Смекни!
smekni.com

Проектирование и исследование механизмов инерционного конвейера (стр. 1 из 2)

Проектирование и исследование механизмов инерционного конвейера

Министерство образования РБ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра теоретической механики

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ

По дисциплине теория механизмов и машин

Тема:

Проектирование и исследование механизмов инерционного конвейера

Выполнил: студент 3 курса

ф-та ТТЛП, группа ММД - 6

Ивасюта В.П.

Проверил: Ласовский Р.Н.

Минск 2003

Принцип действия инерционного конвейера

Инерционный конвейер предназначен для перемещения грузов в горизонтальном направлении. Транспортер 5 конвейера совершает возвратно-поступательное движение с помощью шарнирного четырехзвенника с кривошипом 1, шатуном 2 и коромыслом 3, к которому прикреплен поводок 4. Привод состоит из электродвигателя М1, планетарного зубчатого механизма ПР, зубчатой передачи Z11-Z12 (рис. 1). На оси кривошипа 1 установлен маховик МАХ, являющийся аккумулятором кинетической энергии и обеспечивающий заданный коэффициент неравномерности движения механизма. Изделия 9 поступает на транспортер 5 из накопителя, под управлением кулачкового механизма 7-8 и перемещается за счет сил сцепления при отсутствии относительного движения.

Рис 1. Инерционный конвейер

ВВЕДЕНИЕ

В данном разделе рассматриваются структурный анализ и структурный синтез рычажного механизма.

При анализе определяют число подвижных звеньев механизма, число и класс кинематических пар и число степеней свободы механизма.

В задачу синтеза входит проектирование по заданным условиям структурной схемы механизма. Следует отличать структурную схему механизма от кинематической. В структурной схеме указываются стойка, виды кинематических пар и их взаимное расположение в механизме. Размеры звеньев не учитываются. Составление структурной схемы механизма необходимо в первую очередь для проведения структурного анализа механизма. В кинематической схеме известны размеры, необходимые для кинематического анализа, силового расчета механизма и дальнейшей разработки его конструкции.

Также в данном разделе определяем число степеней свободы механизма. Числом степеней свободы механизма является число независимых параметров, однозначно определяющих положения всех звеньев механизма относительно стойки, например угловые и линейные координаты звеньев. Их называют обобщенными координатами механизма. Звено, которому приписывается одна или несколько обобщенных координат механизма, называют начальным. В механизме с одной степенью свободы – одно начальное звено, а за обобщенную принимают его угловую координату (если звено вращается) или линейную (если звено движется прямолинейно).

В данном курсовом проекте представлены расчеты по проектированию и синтезу пятизвенного рычажного механизма, в основе которого лежит кулисный. Принципиальная схема этого механизма представлена на рис. 2.

Рис. 2 Схема рычажного механизма

1. Исходные данные

Длина хода транспортёра ……………………….…Нр=0.25 м

Угол качения коромысла 3…………………...........β3= 650

Максимальное значение угла давления

между поводком 4 и ползуном 5 ………………… d =100

Коэффициент изменения средней скорости

транспортера при вспомогательном ходе…….....…Кv=1.25

Средняя скорость транспортера 5

при рабочем ходе………………………………...….Vср=0.35 м/с

Относительная координата точки С

на коромысле 3……………………………………..λс = lCD/lED = 0.7

Относительная координата центра

масс S2 на шатуне 2…………………………….…..λS2 = lBS2/lBC = 0.35

Масса транспортера…………………………………..m5=550

Линейная плотность звеньев 2, 3 и 4………………...р=95 кг/м

Коэффициент трения между телами 5 и 6…….…… fтр=0.22

Допускаемый угол давления в

кулачковом механизме……………………………….V=250

Фазовый угол удаления…….……………………..… φу=900

Фазовый угол дальнего стояния……...…………..… φд=200

Фазовый угол сближения…….…………….……..… φв=500

Ход толкателя…….……………………..….…………h=0.05м

2. Структурный анализ рычажного механизма

При структурном анализе механизма определяется количество подвижных звеньев, количество и класс кинематических пар, число степеней подвижности W и класс механизма. В данном проекте при структурном анализе используется принцип образования и классификация механизмов по Ассуру-Артоболевскому.

Суть принципа: любой механизм может быть образован путем присоединения или наслоения к одному или нескольким первичным (начальным) механизмам кинематической цепи нулевой степени подвижности (группы Ассура).

Таблица кинематических пар

0-1 В 1
1-2 В 1
2-3 B 1
3-0 В 1
3-4 В 1
4-5 B 1
5-0 П 1

Степень подвижности рычажного механизма n=5; p5=7; p4=0:

W=3n-2p5-p4=3 5-2 7=1

Это означает, что движение данного механизма задается при помощи одной обобщенной координаты и что в данном механизме имеется только одно входное звено – кривошип. На схеме (см рис. 3) данное звено обозначено цифрой 1.

Далее произведено разбиение механизма на группы Ассура.

Рис. 3 Группы Ассура

Данный механизм второго класса, так как наивысший класс групп Ассура тоже второй. Кинематическая схема рычажного механизма будет иметь вид:

1(0-1) 2(2-3) 2(4-5).

3. Расчет основных размеров и параметров рычажного механизма

Рис 4 Структурная схема

Для удобства расчетов примем:

,
,

Рассмотрим ∆DE’E’’:

С’D=C’’D=DE’ ∙ 0.7=0,16285 м;

Рассмотрим ∆AC’C’’:

Рис.5 Структурная схема

Рассмотрим ∆TC’C’’:

Рассмотрим ∆DC’C’’:

Рассмотрим ∆ATD:

т.е.

Рассмотрим ∆ATC’’:

Рассмотрим ∆ATC’:

Следовательно:

Для удобства занесём все вычисленные длины в таблицу (см. Табл.1):

Табл. 1

АB (м) BC (м) ДЕ (м) CD (м) CE (м)
0.0745 0.27445 0.232645 0.16285 0.069795
BS2 (м) S2C (м) AD (м) EP (м) H
0.0961 0.17835 0.234156 0.10491 0.214428

4. Построение диаграммы приведенных моментов инерции

Пусть, ведущее звено обладает Iпр (момент инерции), относительно оси его вращения, который заменяет все моменты инерции звеньев и называется приведенным моментом инерции. Под которым понимают условный момент инерции, которым должно обладать звено приведения, относительно оси его вращения. Так, чтобы кинетическая энергия этого звена в каждом рассматриваемом положении механизма, была равна сумме кинетических энергий всех его звеньев. Из этого равенства определяем приведенный момент инерции ведущего звена: