Смекни!
smekni.com

Проектирование системы охлаждения кессонов печи взвешенной плавки (стр. 2 из 7)

Если плавку ведут на богатый штейн, то процесс сопровождается образованием большого количества магнетита, который откладывается в виде настылей на охлаждаемых участках футеровки. По мере наращивания слоя магнетитовой настыли процесс стабилизируется и футеровка оказывается в благоприятных условиях, способствующих её длительной работе. Причём наибольший перепад температур наблюдается в тех местах, где футеровка изношена в большей степени. Именно на этих участках отлагаются значительные магнетитовые настыли, предохраняющие кладку от дальнейшего разрушения.

Иное положение наблюдается при плавке на бедный штейн, который способен растворить в себе большие количества магнетита. Бедный штейн получается в самом процессе, как правило, насыщенным по магнетиту. Стекающие по стенкам реакционной шахты струйки расплава растворяют в себе магнетитовую настыль и обнажают нижележащую футеровку, способствуя тем самым её интенсивному износу. В известной степени к такому же результату приводит излишний перегрев продуктов плавки в реакционной зоне при чрезмерном расходе топлива на подтопку.

Внешняя поверхность кожуха верхней половины шахты охлаждается орошением водой. Чтобы достичь желаемого охлаждения хромомагнезитовая футеровка должна плотно прилегать к кожуху. В нижней части шахты весь ”излишек” футеровки разъедается очень быстро и в дальнейшем устанавливается относительное равновесие, поэтому первоначальную футеровку следует выкладывать не более чем на 250 – 300 мм. Верхняя часть шахты достаточно надежна, защищена магнетитовой настылью и поэтому не требует значительного охлаждения. Вполне естественно, что, чем выше температура дутья, тем выше в реакционной шахте будет располагаться зона максимальных температур, и тем большую часть шахты необходимо будет футеровать с закладными медными кессонами.

Вес футеровки шахты передаётся на опорные пояса, роль которых выполняют кольцевые закладные кессоны, прочно скреплённые с кожухом шахты. Последний крепится к несущим конструкциям и, таким образом , шахта оказывается подвешенной без опоры на свод отстойной зоны печи.

Очень ответственным узлом печи является соединение плавильной шахты со сводом отстойной камеры. В равной степени это относится и к сочленению отстойника с аптейком. Соединение шахт с отстойной камерой выполняется из фасонного кирпича или из литого огнеупорного материала. В настоящее время в основном применяют литые огнеупоры, способ укладки которых проще, однако их следует интенсивно охлаждать, так как этот участок непрерывно подвергается действию стекающего расплава. К тому же нижний пояс плавильной шахты примыкает к выпуклому своду отстойника, и герметическая форма сочленения получается сложной.

На некоторых заводах футеровка соединительной части сверху охлаждается кессонами нижнего пояса шахты, а снизу кессонами, установленными между сводом и литыми огнеупорами. Внутри самой футеровки встроено кольцо из водоохлаждаемых медных литых профильных труб. Тепловое расширение между сводом отстойника и шахтой компенсируется температурными швами между сводом и футеровкой из литых огнеупоров.

Слабым местом такой конструкции является недостаточная устойчивость литого огнеупора против разъедания расплавом, поэтому в конструкции должно быть предусмотрено интенсивное охлаждение, которое обеспечило бы образование достаточно толстого слоя гарниссажа. Расход воды должен быть большим и подача воды должна осуществляться по двум параллельным системам, так как даже кратковременная остановка в подаче воды может привести к прогару соединения и выходу из строя всей печи.

Продолжительность срока службы критических точек футеровки печи, к которым прежде всего относятся сочленения шахт со сводом отстойника, зависит от надёжности охлаждения. Даже при непрерывной подаче воды возможно образование пробок за счёт отложения солей, взвеси или прекращение поступления воды в отдельные элементы при их перегреве и закипании воды с образованием паровых пробок. Кратковременное пребывание охлаждающего элемента в таком состоянии неминуемо приводит к его прогару и остановке печи. Для обеспечения бесперебойного охлаждения на печах взвешенной плавки организуют непрерывный автоматический контроль за давлением поступающей охлаждающей воды, её расходом, температурой отходящей воды по наиболее ответственным участкам печи. Кроме того, установка для подачи и регулирования охлаждающей воды должна быть снабжена аварийным быстродействующим насосом, автоматически включающимся при выходе из строя основной системы подачи воды.

1.3 Описание общей системы охлаждения. Система охлаждения холодной водой

До недавнего времени в металлургии единственной системой охлаждения печей являлось охлаждение холодной водой. Эта система применяется с древнейших времён и в принципе наиболее проста.

При охлаждении холодной водой применяют три схемы водоснабжения: прямоточную, оборотную и повторного использования.

В данной работе мы также рассматриваем систему охлаждения холодной водой. В охлаждаемую деталь поступает вода при температуре tв.вх. =10

300С. Значение tв.вх. определяется либо климатическими условиями, либо её предварительной подготовкой. В процессе охлаждения вода воспринимает тепловой поток, поступающий в деталь из рабочего пространства печи, и нагревается до некоторой температуры tв.вых.. В подавляющем большинстве случаев температурный перепад невелик и составляет 5
300С. Коэффициент теплоотдачи
от стенки детали к потоку воды достигает 10 тыс. ккал / (м2 *ч*град ).

Величина

в определяется расходом воды и тепловой нагрузкой на деталь:

,

где q – тепловая нагрузка (тепловой поток), ккал/(м2*с) ;

FT – площадь тепловоспринимающей поверхности детали, м2 ;

М – расход воды, кг/с ;

С – удельная теплоёмкость воды, ккал/(кг*град) .

Выбор взаимосвязанных величин tв.вых,

tв и М диктуется рядом факторов.

Во-первых, при охлаждении в условиях теплопередачи от стенки детали к воде конвекцией в сплошном потоке жидкости большое значение для интенсивности отвода тепла имеет скорость воды, определяющая значение коэффициента теплоотдачи. Если площадь поперечного сечения детали задана, например конструктивными соображениями, то увеличение скорости воды приведёт к возрастанию расхода и снижению t в.вых (расход воды прямо пропорционален скорости, в то время как тепловой поток связан с этой величиной более слабой зависимостью).

Во-вторых, температурный перепад

tв ограничивается из недопущения выпадения карбонатной накипи на стенке детали. Чем выше жёсткость воды (временная и постоянная), тем при более низкой температуре происходит выпадение из неё в виде накипей карбонатов кальция и магния. Накипи ввиду их высокого теплового сопротивления, всегда пагубно сказываются на охлаждении детали. Предельная температура, при которой не происходит ещё выпадение солей карбонатной жёсткости, может быть определена по формулам:

- для прямоточной системы водоснабжения:

;

- для оборотной схемы:

,

где Nк и Nнек - соответственно карбонатная и некарбонатная жёсткости, мг-экв/л;

- окисляемость воды, мг/экв.

Третьим условием является недопущение выпадения в охлаждаемых деталях взвешенных частиц, содержащихся в жидкости (песка, окалин, частиц накипи и пр.). С этой целью необходимо поддерживать скорость воды не менее так называемой самоочищающей скорости wсам, при которой взвешенные частицы выносятся водой из детали. Величина wсам зависит от конструкции детали, рода частиц и их крупности. Обычно значения wсам принимают приближённо, в зависимости от крупности частиц.

Четвёртое условие, которое часто учитывается при проектировании водяного охлаждения, состоит в обеспечении скорости воды, исключающей так называемое местное кипение жидкости, при котором происходит интенсивное накипеобразование, причём, помимо карбонатов, из воды выпадает гипс, образующий стойкие накипи.

Кроме того, приходится учитывать гидравлические показатели. При большой скорости движения воды в охлаждаемых деталях могут возникнуть высокие потери напора, что потребует создания больших давлений в сети и значительно удорожит эксплуатацию системы охлаждения.

На практике, с учётом указанных положений, приходится обычно ограничивать температурный перепад охлаждающей воды, увеличивая её расход.

Несмотря на простоту, система охлаждения холодной водой имеет ряд существенных недостатков: