Смекни!
smekni.com

Производство керамической черепицы (стр. 4 из 5)

Таблица 5 – Карта экологического контроля

Обозначение Вид контроля Контролируемый параметр Источник загрязнения Метод контроля и прибор Меры защиты
Контроль радиоактвности сырьевых материалов; НРБ-99, ГОСТ 30108-94 Допустимая загрязнённость поверхности, токсичность Склад сырьевых материалов Дозиметр Ограничение поступления, обеззаражи-вание
Контроль запылённости ГОСТ- 17.2.2.08-90 Неорганическая пыль, ПДК 6 мг/м3 Ящичный подаватель, бегуны, вальцы Метод фильтрации (отбор разовых и суточных проб) Очистные аппараты: пылеосадительная камера (степень очистки до 60%); циклоны (до 88%); фильтры (до 95%)
Контроль освещённости СНиП-23-05-95 Световой поток, 5000 лм Все пылевые установки Визуально Пылевакуумная уборка
Контроль шума, СНиП-II-12-77 Уровень звука (не более 60 дБ) Ящичный подаватель, бегуны, вальцы, вакуум-пресс Шумомер Звукоизолирующие кожухи и экраны, глушители, индивидуальные средства защиты

6 ИНЖЕНЕРНАЯ ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ

При проектировании технологии производства особое внимание следует обращать на ресурсосбережение, максимальное использование природного сырья и отходов различных производств, на социальную и эколого–экономическую переориентацию производителей продукции на потребность рынка.

Предприятия керамической промышленности выделяют как «традиционные» выбросы, типичные для многих отраслей производства, - золу от сжигания топлива в котельных, дымовые газы, так и специфические аэрозоли, влажные сырьевые смеси, выбракованные черепки.

В качестве экологического контроля в курсовой работе рассмотрим контроль аэрозолей керамической промышленности.

Аэрозоли в промышленности строительных материалов являются гетерогенными полидисперсными системами. Твёрдые частицы этих аэрозолей образуются путём диспергирования при дроблении, измельчении, сушке, обжиге или в процессе химических реакций.

Аэрозоли керамической промышленности образуются при тепловой и механической обработке сырьевых материалов. Они характеризуются высоким влагосодержанием при температуре отходящих газов 110 – 2300С и содержанием частиц размером менее 20 мкм от 40 до 96%. Концентрация вредных веществ в отходящих газах составляет (в г/м3): пыли в распределительных сушилках – 7 – 15, сернистого ангидрида, образующегося в туннельных печах – до 15. Содержание свободного кремнезёма в пыли не превышает 35%. Пыль хорошо смывается водой. [24]

Инженерно-технические мероприятия по борьбе с запыленностью делятся на 3 группы:

- снижение или устранения пылеобразования;

- подавление и улавливание пыли;

- вынос летучей пыли из выработок и обеспыливание воздушного потока.

В технологии производства керамической черепицы, запроектированной в данной курсовой работе для очистки окружающей среды и рабочей зоны от пыли применяется пылеулавливающая установка с виброциклоном типа ВЦНРФ-1, совмещающая 2 стадии очистки. Установка состоит из циклона и тонкого фильтра, связанных между собой воздуховодом таким образом, что выход циклона соединен со входом фильтра.

Данный очистной аппарат представлен на рисунке 4и в приложении 1.

Рисунок 4 - Пылеулавливающая установка с виброциклоном типа ВЦНРФ-1.


Пылеулавливающая установка работает следующим образом.

Запыленный газовый поток подается в установку через патрубок 1, закручивается за счет тангенциального периферийного ввода и винтообразной крышки 3. Затем направляется по исходящей винтовой линии вдоль стенок аппарата. В результате чего частицы пыли под действием центробежной силы движутся от центра аппарата к периферии и, достигая стенок аппарата, транспортируются вниз в коническую часть 6 корпуса для сбора уловленной пыли. Очищенный воздух выводится из циклона через выходной патрубок 2.

Для ускорения осаждения частиц пыли применяют их вибротранспортирование путем сообщения корпусным деталям циклона вибрации с заданными параметрами с помощью вибратора Q, установленного на кольце 8. Регулирование параметров возникающего вибродинамического режима осуществляют посредством блока управления 10. При этом легкие мелкодисперсные фракции частиц пыли, не уловленные в конической части корпуса, задерживаются на тонком фильтре , связанном с ним воздуховодом . После предварительной очистки в фильтре газ поступает в короб для входа загрязненного воздуха тонкого фильтра, затем в блок фильтров с фильтрующими элементами рукавного типа. Пыль осаждается на внутренней поверхности рукавов и периодически сбрасывается с них системой регенерации фильтрующих элементов, выполненной в виде рамы встряхивания с вибратором. Пыль ссыпается в бункер , откуда через шлюз посредством шнекового механизм выгрузки удаляется из фильтра. Для обслуживания фильтра предусмотрены лестницы и площадка. Устройство выгрузки может быть двух типов: выгрузка на базе шнекового транспортера и выгрузка на основе цепного транспортера. Установка комплектуется шкафом управления с микропроцессором, управляемым системами регенерации, выгрузки и пожаротушения. Удельная газовая нагрузка на фильтр выбирается с учетом физико-химических свойств пылегазового потока.

В аппарате происходит снижение виброакустической энергии, так как фильтрующие элементы одновременно является аэродинамическим глушителем шума активного (сорбционного) типа.

Гидравлическое сопротивление фильтрующего элемента составляет 15…25% от гидравлического сопротивления всего аппарата, а материал фильтрующего элемента обладает повышенными звукопоглощающими свойствами.

Внедрение модернизированной пылеулавливающей установки в технологический процесс производства керамической черепицы позволит довести степень очистки запыленного воздуха от пыли до 97 – 98%.


ЗАКЛЮЧЕНИЕ

Курсовая работа состоит из 36 страниц, 5 таблиц, 4 рисунков, наименований источников информации.

Целью выполнения курсовой работы была разработка технологии производства керамической черепицы на основании современных требований к качеству продукции и экологической безопасности производства.

В ходе выполнения курсовой работы цель была достигнута путем решения следующих задач:

1. выбор экономичных и экологически чистых сырьевыех материалов;

2. выбор и обоснование эффективных видов продукции и экологически чистой технологии производства;

3. выявление источников загрязнения окружающей среды;

4. предложение очистного сооружения.

На основании проведенной работы были получены данные о современном состоянии производства керамической черепицы и о перспективах его развития.

После изучения характеристик различных сырьевых ресурсов, были выбраны наиболее экономически выгодные, технологчески эффективные и экологически безопасные материалы.

Проанализировав несколько технологических схем производства, была выбрана наиболее оптимальная, доступная и экологически чистая технология производства керамической черепицы, которая рассмотрена в 5 разделе данной курсовой работы.