Смекни!
smekni.com

Разработка привода цепного транспортера (стр. 4 из 8)

где

- толщина стенки основания корпуса, находится по формуле:

(2.3.2)

где T4 – крутящий момент на тихоходном валу редуктора.

Тогда по формуле (2.3.2)

мм. Принимаем
(мм). При этом по формуле (2.3.1)
(мм). Принимаем
.

Рассчитываем размер гнезда подшипника

, (2.3.3)

где k1 – ширина фланца разъема корпуса, находится по формуле

(2.3.4)

где d'2 –диаметр стяжных болтов, находим по формуле:

(2.3.5)

где d'1 –диаметр фундаментных болтов, определяется по формуле:

(2.3.6)

где T4-крутящий момент на тихоходном валу редуктора.

По формуле (2.3.6)

=13.4мм. Принимаем по таблице 2.4[1] болты М16, значение подставляем в формулу (2.3.5):
(мм). По ГОСТ 7808 – 76 принимаем болты М12, при этом по формуле (2.3.4):
(мм). Тогда по формуле (2.3.3)
. Принимаем накладные крышки гнёзд подшипников. Толщина фланца по таблице 10.5[1] h1=12мм. Толщина прокладок
. Между торцом муфты и крышкой подшипника по рекомендации оставляем зазор h=8 мм. Подсчитываем длину L2 шейки вала с номинальным диаметром d=31 мм. Учитывая неровности и возможную неточность положения литой стенки, подшипник отодвигают от стенки на
.

=60+1,5+12+8-4,5=77 мм.

Длину вала L1 с d=28 мм принимаем равным длине, необходимой для посадки шкива ременной передачи.

(2.3.7)

L1=80+17+3=100 мм.

Длину участка d4 определяем как ширину шестерни (26 мм). Правый подшипник входного вала по условиям унификации принимаем таким же, как и левый, и устанавливаем симметрично относительно шестерни.

Рассчитываем промежуточный вал. В пункте 2.2 рассчитан диаметр промежуточного вала под колесо d5=33,5 мм. Принимаем диаметр под подшипник dп=35 мм. Предварительно принимаем шарикоподшипники лёгкой серии №207: d=35 мм, D=72 мм, В=17 мм. По таблице 8.3[1] определяем диаметр заплечика для упора подшипника d′4=42 мм. Тогда принимаем диаметр под колесо d5=42 мм. Так как размер L остаётся одинаковым, то размеры d, D,

остаются теми же. Учитывая рекомендации, назначаем l=b1=24 мм, где b1-ширина колеса входной ступени. Причем отношение
находится в рекомендуемых пределах (рекомендация 10.3[1]). Усиливаем соединение колеса с валом за счёт шпонки. По таблице 2.29[1] размеры поперечного сечения шпонки: b=12 мм, h=8 мм.

Рабочая длина шпонки:

, (2.3.8)

где [sсм] – допускаемое напряжение смятия,

h – толщина шпонки,

d5 – диаметр вала,

T3 – крутящий момент промежуточного вала редуктора.

Принимаем по рекомендациям стр.90[3] [sсм] =150 МПа, тогда по формуле (2.3.8)

.

Учитывая закругления концов шпонки, получаем:

l = lp+b =14,98+12 =26,98 мм.

По таблице 2.29[1] назначаем l=24 мм. Отмечаем, что длина ступицы достаточна для размещения шпонки, так как b1=24 мм.

Диаметр участка вала между колесом и шестерней:

d6=d5+3f (2.3.9)

где f-размер фаски.

По таблице стр.25[4] f=1,5, тогда по (2.3.9) d6=42+3·1,5=46,5 мм. Значение диаметра округляем в ближайшую сторону до стандартного значения по таблице 24.1[4], получаем d7=50 мм. Учитывая рекомендации, назначаем изготовление шестерни заодно с валом.

Рассчитываем выходной вал. В пункте 2.2 рассчитан диаметр выходного вала под колесо d9=49,4 мм. Значение диаметра округляем в большую сторону до стандартного значения по таблице 24.1[4], получаем d9=63 мм. Принимаем диаметр под подшипник dп=55 мм. Предварительно принимаем шарикоподшипники лёгкой серии №211: d=55 мм, D=100 мм, В=21 мм. По таблице 8.3[1] определяем диаметр заплечика для упора подшипника d″′4=63 мм. Принимаем диаметр вала под колесо d9=63 мм. Так как размер L остаётся одинаковым, то размеры d, D,

остаются теми же. Учитывая рекомендации, назначаем l=b3=64 мм, где b3 – ширина колеса быстроходной ступени. Причем отношение
находится в рекомендуемых пределах. Усиливаем соединение колеса с валом за счёт шпонки. По таблице 2.29[1]: b=18 мм, h=11 мм.

Рабочая длина шпонки:

, (2.3.12)

где [sсм]-допускаемое напряжение смятия,

h – толщина шпонки,

d9 – диаметр вала,

T4 – крутящий момент выходного вала редуктора.

Принимаем по рекомендациям стр.90[3] [sсм] =190 МПа, тогда по формуле (2.3.12)

.

Учитывая закругления концов шпонки, получаем: l=lp+b=18,3+18=36,3 мм.

По таблице 2.29[1] назначаем l=40 мм. Отмечаем, что длина ступицы достаточна для размещения шпонки, так как b3=64 мм.

Диаметр участка вала между колесом и шестерней:

d10=d9+3f (2.3.13)

где f-размер фаски.

По таблице стр.25[4] f=2, тогда по (2.3.9) d6=63+3·2=69 мм. Значение диаметра округляем в ближайшую сторону до стандартного значения по таблице 24.1[4], получаем d7=71 мм. Длину шейки вала с d11=dподшипника=55 мм определим: l=1,25·dподшипника=1,25·55=68,75 мм.

Полученный эскизный чертёж редуктора смотрите на рис.1.

2.4 Проверочный расчет зубчатых передач

Выполняем проверочный расчёт на усталость по контактным напряжениям.

, (2.4.1)

где Епр – приведённый модуль упругости (определён - см. формулу(1.6а)),

Т3 – крутящий момент на промежуточном 3-м валу(Н.мм),

αW – угол зацепления.

Предварительно определяем коэффициент расчётной нагрузки при расчётах по контактным напряжениям:

Кнн β.Кнυ, (2.4.2)

где Кнβ – коэффициент концентрации нагрузки при расчёте по контактным напряжениям,

Кнυ – коэффициент динамической нагрузки при расчёте по контактным напряжениям.

Окружную скорость определяем по формуле:

υ=(π . d2 . n)/60=(3,14∙242,5∙57,3)/60=727 мм/c=0,73 м/с,

где d2 – делительный диаметр колеса (мм),

n – частота вращения выходного 4-го вала.

По таблице (8.2 М.Н. Иванов ”Детали машин”) назначаем 9-ю степень точности. По таблице (8.3 М.Н. Иванов ”Детали машин”) Кнυ=1,01. Ранее было найдено Кнβ=1,07. При этом по формуле (2.4.2): Кн=1,01 .1,07=1,08.

По формуле (2.4.1), учитывая, что для нашего примера αW=200 ,

:

σн=563,8 МПа<[σн]=584,7 МПа.

Выполняем проверочный расчёт по напряжениям изгиба.

, (2.4.3)

где YF – коэффициент формы зуба,

Ft – окружная сила,

КF – коэффициент расчётной нагрузки при расчётах по контактным напряжениям,

bW – ширина зубчатого венца,

m – модуль.

По графику (рис.8.20 М.Н. Иванов ”Детали машин”) при х=0 находим:

для шестерни (z=31) YF=3,83;

для колеса (z=97) YF=3,75.

Предварительно определяем коэффициент расчётной нагрузки при расчётах по контактным напряжениям:

КFF β.К, (2.4.4)

где К – коэффициент концентрации нагрузки при расчёте напряжениям изгиба,

К – коэффициент динамической нагрузки при расчёте по напряжениям изгиба.

Расчёт выполняем по тому колесу пары, у которого меньше отношение

. В нашем случае для шестерни это отношение равно [σF]/3.83, а для колеса - [σF]/3.75. Поэтому расчёт выполняем по колесу.

По графику (рис.8.15 [3]) К=1,15. По таблице (8.3 [3]) К=1,04. Отсюда по формуле (2.4.4): КF=1,15 .1,04=1,2.

Далее определяем окружную силу Ft=2∙T3/d1= (2∙188,8∙103)/77,5=4872,3 (Н), где Т3 – крутящий момент на промежуточном 3-м валу(Н . мм),

d1 – делительный диаметр шестерни.

Отсюда по формуле(2.4.3) получаем: σF=140(МПа) < [σF]=554 (МПа).

Выполняем проверочный расчёт на заданную перегрузку (Тпmax=2,5 по таблице 0.1[3]):