где
- толщина стенки основания корпуса, находится по формуле: (2.3.2)где T4 – крутящий момент на тихоходном валу редуктора.
Тогда по формуле (2.3.2)
мм. Принимаем (мм). При этом по формуле (2.3.1) (мм). Принимаем .Рассчитываем размер гнезда подшипника
, (2.3.3)где k1 – ширина фланца разъема корпуса, находится по формуле
(2.3.4)где d'2 –диаметр стяжных болтов, находим по формуле:
(2.3.5)где d'1 –диаметр фундаментных болтов, определяется по формуле:
(2.3.6)где T4-крутящий момент на тихоходном валу редуктора.
По формуле (2.3.6)
=13.4мм. Принимаем по таблице 2.4[1] болты М16, значение подставляем в формулу (2.3.5): (мм). По ГОСТ 7808 – 76 принимаем болты М12, при этом по формуле (2.3.4): (мм). Тогда по формуле (2.3.3) . Принимаем накладные крышки гнёзд подшипников. Толщина фланца по таблице 10.5[1] h1=12мм. Толщина прокладок . Между торцом муфты и крышкой подшипника по рекомендации оставляем зазор h=8 мм. Подсчитываем длину L2 шейки вала с номинальным диаметром d=31 мм. Учитывая неровности и возможную неточность положения литой стенки, подшипник отодвигают от стенки на . =60+1,5+12+8-4,5=77 мм.Длину вала L1 с d=28 мм принимаем равным длине, необходимой для посадки шкива ременной передачи.
(2.3.7)L1=80+17+3=100 мм.
Длину участка d4 определяем как ширину шестерни (26 мм). Правый подшипник входного вала по условиям унификации принимаем таким же, как и левый, и устанавливаем симметрично относительно шестерни.
Рассчитываем промежуточный вал. В пункте 2.2 рассчитан диаметр промежуточного вала под колесо d5=33,5 мм. Принимаем диаметр под подшипник dп=35 мм. Предварительно принимаем шарикоподшипники лёгкой серии №207: d=35 мм, D=72 мм, В=17 мм. По таблице 8.3[1] определяем диаметр заплечика для упора подшипника d′4=42 мм. Тогда принимаем диаметр под колесо d5=42 мм. Так как размер L остаётся одинаковым, то размеры d, D,
остаются теми же. Учитывая рекомендации, назначаем l=b1=24 мм, где b1-ширина колеса входной ступени. Причем отношение находится в рекомендуемых пределах (рекомендация 10.3[1]). Усиливаем соединение колеса с валом за счёт шпонки. По таблице 2.29[1] размеры поперечного сечения шпонки: b=12 мм, h=8 мм.Рабочая длина шпонки:
, (2.3.8)где [sсм] – допускаемое напряжение смятия,
h – толщина шпонки,
d5 – диаметр вала,
T3 – крутящий момент промежуточного вала редуктора.
Принимаем по рекомендациям стр.90[3] [sсм] =150 МПа, тогда по формуле (2.3.8)
.Учитывая закругления концов шпонки, получаем:
l = lp+b =14,98+12 =26,98 мм.
По таблице 2.29[1] назначаем l=24 мм. Отмечаем, что длина ступицы достаточна для размещения шпонки, так как b1=24 мм.
Диаметр участка вала между колесом и шестерней:
d6=d5+3f (2.3.9)
где f-размер фаски.
По таблице стр.25[4] f=1,5, тогда по (2.3.9) d6=42+3·1,5=46,5 мм. Значение диаметра округляем в ближайшую сторону до стандартного значения по таблице 24.1[4], получаем d7=50 мм. Учитывая рекомендации, назначаем изготовление шестерни заодно с валом.
Рассчитываем выходной вал. В пункте 2.2 рассчитан диаметр выходного вала под колесо d9=49,4 мм. Значение диаметра округляем в большую сторону до стандартного значения по таблице 24.1[4], получаем d9=63 мм. Принимаем диаметр под подшипник dп=55 мм. Предварительно принимаем шарикоподшипники лёгкой серии №211: d=55 мм, D=100 мм, В=21 мм. По таблице 8.3[1] определяем диаметр заплечика для упора подшипника d″′4=63 мм. Принимаем диаметр вала под колесо d9=63 мм. Так как размер L остаётся одинаковым, то размеры d, D,
остаются теми же. Учитывая рекомендации, назначаем l=b3=64 мм, где b3 – ширина колеса быстроходной ступени. Причем отношение находится в рекомендуемых пределах. Усиливаем соединение колеса с валом за счёт шпонки. По таблице 2.29[1]: b=18 мм, h=11 мм.Рабочая длина шпонки:
, (2.3.12)где [sсм]-допускаемое напряжение смятия,
h – толщина шпонки,
d9 – диаметр вала,
T4 – крутящий момент выходного вала редуктора.
Принимаем по рекомендациям стр.90[3] [sсм] =190 МПа, тогда по формуле (2.3.12)
.Учитывая закругления концов шпонки, получаем: l=lp+b=18,3+18=36,3 мм.
По таблице 2.29[1] назначаем l=40 мм. Отмечаем, что длина ступицы достаточна для размещения шпонки, так как b3=64 мм.
Диаметр участка вала между колесом и шестерней:
d10=d9+3f (2.3.13)
где f-размер фаски.
По таблице стр.25[4] f=2, тогда по (2.3.9) d6=63+3·2=69 мм. Значение диаметра округляем в ближайшую сторону до стандартного значения по таблице 24.1[4], получаем d7=71 мм. Длину шейки вала с d11=dподшипника=55 мм определим: l=1,25·dподшипника=1,25·55=68,75 мм.
Полученный эскизный чертёж редуктора смотрите на рис.1.
2.4 Проверочный расчет зубчатых передач
Выполняем проверочный расчёт на усталость по контактным напряжениям.
, (2.4.1)где Епр – приведённый модуль упругости (определён - см. формулу(1.6а)),
Т3 – крутящий момент на промежуточном 3-м валу(Н.мм),
αW – угол зацепления.
Предварительно определяем коэффициент расчётной нагрузки при расчётах по контактным напряжениям:
Кн=Кн β.Кнυ, (2.4.2)
где Кнβ – коэффициент концентрации нагрузки при расчёте по контактным напряжениям,
Кнυ – коэффициент динамической нагрузки при расчёте по контактным напряжениям.
Окружную скорость определяем по формуле:
υ=(π . d2 . n)/60=(3,14∙242,5∙57,3)/60=727 мм/c=0,73 м/с,
где d2 – делительный диаметр колеса (мм),
n – частота вращения выходного 4-го вала.
По таблице (8.2 М.Н. Иванов ”Детали машин”) назначаем 9-ю степень точности. По таблице (8.3 М.Н. Иванов ”Детали машин”) Кнυ=1,01. Ранее было найдено Кнβ=1,07. При этом по формуле (2.4.2): Кн=1,01 .1,07=1,08.
По формуле (2.4.1), учитывая, что для нашего примера αW=200 ,
:σн=563,8 МПа<[σн]=584,7 МПа.
Выполняем проверочный расчёт по напряжениям изгиба.
, (2.4.3)где YF – коэффициент формы зуба,
Ft – окружная сила,
КF – коэффициент расчётной нагрузки при расчётах по контактным напряжениям,
bW – ширина зубчатого венца,
m – модуль.
По графику (рис.8.20 М.Н. Иванов ”Детали машин”) при х=0 находим:
для шестерни (z=31) YF=3,83;
для колеса (z=97) YF=3,75.
Предварительно определяем коэффициент расчётной нагрузки при расчётах по контактным напряжениям:
КF=КF β.КFυ, (2.4.4)
где КFβ – коэффициент концентрации нагрузки при расчёте напряжениям изгиба,
КFυ – коэффициент динамической нагрузки при расчёте по напряжениям изгиба.
Расчёт выполняем по тому колесу пары, у которого меньше отношение
. В нашем случае для шестерни это отношение равно [σF]/3.83, а для колеса - [σF]/3.75. Поэтому расчёт выполняем по колесу.По графику (рис.8.15 [3]) КFβ=1,15. По таблице (8.3 [3]) КFυ=1,04. Отсюда по формуле (2.4.4): КF=1,15 .1,04=1,2.
Далее определяем окружную силу Ft=2∙T3/d1= (2∙188,8∙103)/77,5=4872,3 (Н), где Т3 – крутящий момент на промежуточном 3-м валу(Н . мм),
d1 – делительный диаметр шестерни.
Отсюда по формуле(2.4.3) получаем: σF=140(МПа) < [σF]=554 (МПа).
Выполняем проверочный расчёт на заданную перегрузку (Тп/Тmax=2,5 по таблице 0.1[3]):