- определения размеров, места расположения пружиняще-эжекторных элементов;
- автоматического проектирования системы биговальных каналов контрштампа с выполнением чертежа;
- автоматической подготовки чертежей оснастки для удаления отходов и разделения заготовок.
Традиционно в качестве основания штанцформы используется фанера. Задача подготовки основания штанцформы к сборке состоит в прорезании в основании пазов для линеек. Наибольшее распространение сегодня получает применение специализированных лазерных установок с числовым программным управлением (ЧПУ типа CNC – computer numerical control) для прожигания пазов в основании штампа. Недостатки фанеры (наличие полостей, сучков, двойных слоев) вынуждает искать альтернативные материалы основания штанцформы. На сегодняшний день в этом качестве выступают металлические («сэндвич») и неметаллические (дурамар) конструкции. В первом случае для подготовки основания также используется лазер, а во втором – установки резки струей воды.
Максимальную автоматизацию подготовки линеек штанцформы обеспечивает применение автоматизированного комплекса оборудования, включающего в свой состав автоматические машины для нарезки, пробивки арок и гибки, максимальную автоматизацию подготовки пружиняще-эжекторных элементов штанцформы - устройства резки струей воды с ЧПУ типа CNC.
Сейчас в России самым массовым способом формирования системы биговальных каналов является использование ленточных биговальных матриц, но эта технология представляется неперспективной: отсутствие автоматизации (матрицы нарезаются вручную) приводит к большой трудоемкости процесса приладки, а также к низкому качеству контрштампа. Все большее распространение в качестве системы формирования биговальных каналов получает технология биговальных матриц из пертинакса. В отличие от ленточных биговальных матриц биговальные матрицы из пертинакса изготавливаются посредством фрезерования: либо на фрезерных установках с ЧПУ (CNC), либо на плоттерных установках, оснащенных модулем фрезерования. Сейчас в Европе для формирования системы биговальных каналов достаточно широко используется технология стальных пластин marbagrid, для производства которых применяется лазер.
При изготовлении форм для удаления отходов (в том случае, если они выполнены на фанерном основании) используются лазерная или фрезерная установки.
Все вышеперечисленное оборудование (лазерная, фрезерная установки, устройство резки струей воды, плоттерные системы) обладают высокой степенью автоматизации, комплекс для подготовки линеек работает в автоматическом режиме. Для управления плоттерами и некоторыми моделями лазеров, поддерживающих данный формат, используется набор команд языка HPGL. Для управления станками с ЧПУ типа CNC - набор команд языка CFF2 (сокращение от Common File Format версии 2 – стандарт обмена данными в специализированных для индустрии упаковки из картона CAD/CAM системах) или DDES2 (сокращение от Digital Diecutting Exchange Standard версии 2 – стандарт Международной ассоциации производителей штанцформ IADD).
Как в России, так и в Европе до сих пор достаточно распространены штанцевальные системы, в которых одна из операций (например, разделение заготовок) осуществляется либо с помощью ручных приспособлений, либо вообще вручную. Однако последние тенденции однозначно показывают, что будущее за подходом к построению полностью автоматизированных штанцевальных систем. Признанным лидером на рынке штанцевальных комплексов является группа компаний Bobst. Последние модели Bobst способны работать со скоростью свыше 10000 ударов в час.
Новейшие тенденции в области автоматических фальцевально-склеивающих линий предусматривают модульный подход к их построению. Таким образом решаются проблемы небольших тиражей, фальцовки и склеивания упаковки сложных конструкций. Особое внимание уделяется интегрированным устройствам контроля качества, обеспечивающим однородность и точность обрабатываемых заготовок. Как правило, в штанцевальных и фальцевально-склеивающих линиях функция стапелирования выполняется автоматически.
Качество упаковки из картона складывается из многих факторов, среди которых оснастка для штанцевания – один из основных. Оснастка для штанцевания в значительной степени определяет поведение упаковки при фальцовке и склеивании, а затем и при упаковывании.
Именно поэтому ведущие зарубежные производители уделяют большое внимание вопросам совершенствования технологий штанцевания, производства штанцформ, а также качеству материалов, используемых в их производстве. Причем, наряду с повышением качества упаковки, не менее актуальной является задача повышения экономической отдачи от эксплуатации штанцформ. Основными направлениями работ в рамках этой задачи являются:
· сокращение времени приправки при запуске тиража,
· увеличение тиражестойкости штанцформ,
· повышение реальной производительности штанцевальных машин.
Как видно из табл. 2, производители упаковки в России пока не используют все многообразие возможных решений для штанцевания, тем самым принципиально ограничивая собственные возможности по повышению качества упаковки и увеличению объемов прибыли от использования штанцевальных машин.
Табл.2. Сравнение ассортимента оснастки для штанцевания в России и Западной Европе.
Вид оснастки | Россия | Западная Европа |
Штанцформы для производства упаковки | На фанерном основании со стальными линейками | Со стальными линейками (в том числе повышенной износостойкости) на основаниях: · фанера, фанера улучшенного качества (marbaplex) · композиционные материалы (duramar) · стальной «сэндвич» («sandwich») С биговальными пластинами |
Ответные части штанцформ | Ленточные биговальные каналы Контрматрицы из прессшпана и пертинакса | Ленточные биговальные каналы Контрматрицы из пертинакса, латуни, ветронита Стальные биговальные контрпластины |
Оснастка для удаления отходов | Традиционное исполнение Технология marbastrip | Традиционное исполнение Технологии marbastrip, marbastrip-s, clip strip |
Оснастка для разделения заготовок (нижняя часть) | Комбинированное «экономичное» исполнение Цельнометаллическая сварная конструкция | Комбинированное «экономичное» исполнение Цельнометаллическая сварная конструкция |
Основание штанцформы
Рис.24. Виды дефектов фанеры.
Первая проблема – неоднородность фанеры. Наличие полостей, сучков, двойных слоев ведет к дефектам при лазерной резке пазов, что приводит к снижению прочности крепления линеек в основании штампа. Причем это снижение как правило не ощутимо при сборке штанцформы. Подобные недостатки сказываются в процессе эксплуатации штанцформы и могут приводить к необходимости непредвиденного ремонта. Таким образом, из-за экономии 20-30 долларов на качестве фанеры, штанцевальная машина может простаивать от несколько часов до целой смены. Поэтому важно использовать фанеру высшего качества из отборного шпона.
Вторая проблема – низкая влагостойкость фанеры (рис. 24). Под воздействием влаги фанера меняет свои геометрические размеры. Тем самым особые требования предъявляются к условиям хранения и транспортировки фанеры и штампов на фанерном основании. Эти требования сами по себе влекут дополнительные затраты, а их несоблюдение приводит к невозможности выполнения заказа и простою оборудования. Выходом в этом случае является использование фанеры со специальным покрытием, которое обеспечивает повышенную стабильность внешних размеров основания штанцформы.
Но и этим не исчерпываются недостатки фанеры. Физические свойства фанеры и стали, из которой изготавливаются линейки и основание контрштампа, различны, поэтому температурные колебания, возникающие в процессе штанцевания, становятся проблемой для точности совмещения штампа и контрштампа. При возникновении подобной ситуации штанцевальное оборудование опять же вынуждено простаивать. Кроме того, низкая прочность фанеры допускает не более одной замены линеек в основании при условии сохранения качества.
Для устранения дефектов, возникающих при работе штанцформы на фанерном основании, зарубежные производители стали применять в качестве основания штанцформ альтернативные материалы.
Наилучшими характеристиками обладает стальное основание «сэндвич» («sandwich»), получившее название из-за своей структуры: «сталь – полимерный компаунд - сталь». Основание, изготовленное по этой технологии, обладает исключительной прочностью (тиражестойкость – более 10 млн. ударов; может выдержать более 10 замен линеек). При эксплуатации штанцформы «sandwich» не возникает проблемы совмещения штампа и контр-штампа.
Высокая стоимость штанцформ на металлическом основании обуславливает применение неметаллических материалов, наибольшее распространение из которых получил дурамар (duramar) – многослойная стеклоткань с наполнителем из полиэстера. По своим характеристикам дурамар значительно превосходит другие материалы, такие как пертинакс (pertinax), пермаплекс (permaplex), акриловое стекло (acrylglas).
В таблицах приведен сравнительный технико-экономический анализ использования штанцформ с различными типами оснований. Предполагается, что штанцформы оснащены режущими линейками повышенной износостойкости, которые требуют замены через 1 млн. ударов.
Таблица 3.
Технико-экономические характеристики штанцформ с основаниями из различных материалов.
Материал основания | Стоимость, $ | Тиражестойкость, млн. ударов | Стоимость замены линеек, $ | Возможное число замен линеек |
Фанера | ~700 | 2 | ~490 | 1 |
Дурамар | ~1800 | 5 | ~540 | 4 |
«Sandwich» | ~3200 | >10 | ~540 | > 10 |
Таблица 4.