Смекни!
smekni.com

Расчет заклепочных швов (стр. 4 из 7)

2. Молекулярно - механический износ - схватывание или заедание (местное сваривание поверхностей с последующим выравниванием частиц одного тела, приварившихся к другому телу).

3. Коррозийнно - механический износ, при котором продукты коррозии стираются механическим путем.

1.4 Теплостойкость - способность деталей работать при высоких и низких температурах. Теплостойкость особенно имеет значение для деталей машин, работа которых связана с большим тепловыделением (Д.В.С., тормоза, муфты, сцепления). При этом возникают отрицательные явления:

1. Понижение несущей способности деталей (понижение основных механических характеристик, потеря пластичности и т.п.).

2. Понижение защитной способности масляного слоя, повышенный износ и заедание.

3. Изменение зазоров в подвижных соединениях.

4. Снижение коэффициента трения (опасно для тормозов).

5. Снижение точности (у процезионных деталей).

Чтобы не допустить вредных последствий перегрева на работу машины, выполняют тепловые расчеты и, если необходимо, вносят соответствующие конструктивные изменения (например, искусственное охлаждение) [14].

1.5 Вибороустойчивость - способность конструкции работать в нужном диапазоне режимов в пределах допускаемых колебаний. Основной задачей расчета на виброустойчивость является выбор такой жесткости, при которой небудет опасности возникновения резонанса. "Авторезонанс" имеет и положительное значение.

Вибрация вызывает дополнительные переменные напряжения, как правило, приводит к усталостному разрушению деталей. В некоторых случаях вибрация снижает качество работы машины. Например, вибрация в металлорежущих станках снижает точность обработки и ухудшает качество поверхности обрабатываемых деталей. Вредное влияние вибраций проявляется также и вследствие увеличения шумовых характеристик механизмов. В связи с повышением скоростей движения машин опасность вибраций возрастает, поэтому расчеты на колебания приобретают все большее значение [9].

1.6 Одним из требований, предъявляемым к машинам и их деталям является технологичность конструкций, которая значительно влияет на стоимость машины.

Технологичность деталей - это способность обеспечить наибольшую простоту и экономичность их изготовления.

1.7 Снижение массы машин (металлоемкость) по агротехническим требованиям.

4.2 Расчетные нагрузки

При расчетах деталей машин необходимо знать нагрузку, действующую на детали машин. Нагрузка может быть задана силой F(Н) или моментом Т(H·м ):

аналитическая связь между ними:

T =

, T = 9,550
, (5)

T =

, (6)

N =

. (7)

Нагрузка может быть постоянной, переменной и ударной (рис. 7).

Рис. 7. Виды нагрузок: 1-симметричная знакопеременная нагрузка; 2-ассиметричная, знакопеременная нагрузка; 3-пульсирующая нагрузка; 4-ассиметричная, знакопостоянная нагрузка; 5-постоянная нагрузка

Для деталей, подвергаемым переменным нагрузкам, даются гистограммы нагрузок, полученных на основании экспериментальных замеров и расчетов типичных машин (Рис 8).

Рис.8 Гистограмма нагрузки

При расчетах деталей машин различают расчетную и номинальную нагрузку [11].

Под номинальной нагрузкой понимается длительно действующая нагрузка, при которой деталь работает как угодно долго.

Расчетную нагрузку определяют как произведение номинальной нагрузки на динамический коэффициент режима нагрузки.

Например, для крутящегося момента:

Т

д·Тн, (8)

где Тр - расчетный момент, Н·м;

Тн - номинальный момент, Н·м;

Кд- динамический коэффициент нагрузки.

Номинальный момент соответствует паспортной (проектной) мощности машины. Коэффициент Кд учитывает дополнительные динамические нагрузки, связанные в основном с неравномерностью движения, пуском, торможением. Этот коэффициент зависит от типа двигателя, привода, и работы машины, например:

Кд= 1,1...1,2 (токарные, сверлильные);

Кд = 1,25...1,35 (фрезерные).

При расчете некоторых механизмов вводят дополнительные коэффициенты нагрузки, учитывающие специфические особенности этих механизмов, например, для зубчатых передач [27].

4.3 Пути повышения надежности деталей машин на стадии проектирования

1. Разумный подход к получению высокой надежности состоит в проектировании по возможности простых изделий с меньшим числом деталей. Каждой детали должна быть обеспечена достаточно высокая надежность, равная или близкая к надежности остальных деталей [6].

2. Одним из простейших и эффективных мероприятий по повышению надежности является уменьшение напряженности детали (повышение запаса прочности). Однако это требование надежности вступает в. противоречие с требованиями уменьшения габаритов, массы и стоимости изделий. Для примирения этих противоречивых требований надо рационально использовать высокопрочные материалы и упрочняющую технологию: легирование стали, термическую и химико-термическую обработку, наплавку твердых и антифрикционных сплавов на поверхность деталей и др.

Так, например, путем термической обработки можно увеличить нагрузочную способность зубчатых колес в 2...4 раза. Хромирование шеек коленчатого вала автомобильных двигателей увеличивает срок службы по износу в 3...5 раз.

3. Эффективной мерой повышения надежности является хорошая система смазки, правильный выбор сорта масла, рациональная система подвода смазки к трущимся поверхностям, защита трущихся поверхностей от абразивных частиц (пыли и грязи) путем размещения изделий в закрытых корпусах, установка эффективных уплотнений и т.п.

4. Если условия эксплуатации таковы, что возможны случайные перегрузки, то в конструкции следует предусматривать предохранительные устройства (предохранительные муфты или реле максимального тока).

5. Конструируемая машина должна отвечать требованиям унификации и стандартизации [8].

а). Унификация - рациональное сокращение многообразия видов, типов и типоразмеров изделий одинакового функционального назначения. Унификация представляет собой эффективный и экономичный способ создания на базе исходной модели ряда производных машин одинакового назначения, но с различными показателями мощности, производительности и т.д., или машин различного назначения, выполняющих качественно другие операции, а также рассчитанных на выпуск иной продукции.

б). Стандартизация — установленные и применение единообразия и обязательных требований к изделиям и продукции массового производства.

Унификация и стандартизация позволяют организовать серийное и массовое производство деталей и сборочных единиц на специализированных предприятиях, приводят к уменьшению трудоемкости и стоимости изготовления, повышению качества и увеличению долговечности деталей, сокращают время конструирования и освоения новых машин, обеспечивают взаимозаменяемость деталей [21].

Величина коэффициента унификации служит одним из показателей качества конструкторской разработки проекта машин. Этот коэффициент показывает насколько велико использование в проекте стандартных деталей, заимствованных из других аналогичных машин.

Коэффициент унификации машины (узла) может быть определен по количеству наименований (типоразмеров) К и по количеству деталей Кд:

КТ =

·100%,=

·100% ≈ 69%, (9)

где n – общее количество наименований деталей по спецификации;

n

- количество оригинальных наименований деталей, т.е. не стандартных и не зависимых из других конструкций:

Кд =

100%,=

100% ≈ 69%, (10)

где Nобщее количество деталей в узле, машине;

N0 - количество оригинальных деталей.

Взаимозаменяемость - свойство деталей и узлов, позволяющее заменять их без дополнительной обработки с сохранением всех требований к работе данной машины. Взаимозаменяемостью могут обладать не только отдельные детали, но и сборочные единицы. Так, в различных редукторах могут быть взаимозаменяемыми зубчатые колеса, валы, подшипники, крышки подшипниковых узлов и др. В различных машинах сами редукторы могут быть взаимозаменяемыми [19].

Качественным показателем этого принципа конструирования изделия служат коэффициент стандартизации КСТи коэффициент преемственности КПР:

К

=
, (11)

где ZСТ - число стандартных изделий в конструкции;