Смекни!
smekni.com

Расчет и проектирование циклона для очистки от зерновой пыли (стр. 3 из 3)

Чувствительный элемент сигнализатора уровня 4, шторки-датчики 6 и заслонка 7 служит для регулирования подачи зерна. Поверхность вальцов очищается с помощью щеток 1 и ножей 8. Измельченное зерно II удаляется через выпускные конусы 9. Для сортирования продуктов измельчения зерна по размеру частиц после каждого вальцового станка устанавливается рассев с набором сит разных размеров, расположенных друг под другом.

3. Расчет циклона

Исходные данные (пыль зерновая):1) количество очищаемого газа при рабочих условиях Qр = 3800 м3/ч = =1,05 м3/с;2) плотность газа при рабочих условиях ρг = 1,3 кг/м3;3) динамическая вязкость газа при рабочей температуре μt = 22,2*10-6 Па·с;4) дисперсный состав пыли, задаваемый двумя параметрами dm = 5 мкм и lg σч = 0,283;5) запыленность газа Свх = 10 г/м3;6) плотность частиц ρч = 1100 кг/м3;7) требуемая эффективность очистки газа η = 80 %.Расчет циклонов производится методом последовательных приближений в следующем порядке:1. Задавшись типом циклона (ЦН-15У), по таблице 2.8 [1] определяем оптимальную скорость газа в аппарате ωопт = 3,5 м/с.2. Определяем необходимую площадь сечения циклона, м2:
3. Определяем диаметр циклона, задаваясь количеством циклонов N=1, м:
Диаметр циклона округляем до значения, указанного в таблице 2.2 [1]. В данном случае D = 0,5 м.4. Вычисляем действительную скорость газа в циклоне, м/с:
Скорость газа в циклоне не должна отклоняться от оптимальной более чем на 15%.В данном случае отклонение составляет 6 %, что допустимо.5. Принимаем по таблице 2.10 коэффициент гидравлического сопротивления, соответствующий данному циклону:
1 - поправочный коэффициент на диаметр циклона, определяемый по таблице 2.11: К1 = 1;К2 - поправочный коэффициент на запыленность газа, определяемый по таблице 2.12: К2 = 0,92;К3 - коэффициент, учитывающий дополнительные потери давления, определяемый по таблице 2.13:К3 = 35

6. Определяем потери давления в циклоне, Па:

7. Приняв по таблице 2.8 два параметра, характеризующих эффективность выбранного типа циклона, определяем значение параметра d50 при рабочих условиях (диаметр циклона, скорость потока, плотность пыли, динамическая вязкость газа) по уравнению:

8. Определяем параметр Х по формуле:

9. Определяем по таблице 1.11 значение Ф(Х), представляющее собой полный коэффициент очистки газа, выраженный в долях:

Ф (0,66) = 0,497

10. Фактическая степень очистки, %:

Для проектирования и построения циклона необходимы геометрические размеры. Для этого используем табл. 1.13 [2] “Соотношение размеров (в долях внутреннего диаметра)”:

Внутренний диаметр выхлопной трубы d = 0,3 м;

Внутренний диаметр пылевыпускного отверстия d1 = 0,2 м;

Ширина входного патрубка в циклоне (внутренний размер) b = 0,1 м;

Ширина входного патрубка на входе (внутренний размер) b1 = 0,13 м;

Длина входного патрубка l = 0,3 м;

Диаметр средней линии циклона Dср = 0,4 м;

Высота установки фланца hфл = 0,05 м;

Угол наклона крышки и входного патрубка циклона α = 15°;

Высота входного патрубка а = 0,33 м;

Высота выхлопной трубы hт =0,75 м;

Высота цилиндрической части циклона Hц = 0,755 м;

Высота конуса циклона Hк = 0,75 м;

Высота внешней части выхлопной трубы hв = 0,15 м;

Общая высота циклона H =1,71 м.

Таблица 1 - Техническая характеристика Циклона ЦН-15-500 × 1УП

Типоразмер циклона Площадь сечения цилиндрической части корпуса (группы корпусов), м2 Производительность, м3 Рабочий объем бункера, м3
при V=2,5 м/с при V=4 м/с
ЦН-15-500 × 1УП 0,196 1800 2800 0,32

Условное обозначение:

Ц-циклон; Н- конструкция НИИОГАЗа; цифры после тире: первая (500) - внутренний диаметр цилиндрической части циклона (мм); вторая (после знака умножения) - количество циклонов в группе; У - усовершенствованный; П - пирамидальная форма бункера.


Заключение

Данный курсовой проект позволил расширить, систематизировать и закрепить знания, полученные при изучении методов очистки выбросов отходящих газов. Все методы очистки отходящих газов от пыли и загрязняющих веществ подразделяются на мокрые и сухие. Процесс пыле- или золоулавливания в мокрых газоочистных аппаратах сопровождается процессами абсорбции и охлаждения газов. Многие аппараты этого класса могут применяться не только для очистки газов от пыли и капель жидкости, но и для очистки от газообразных составляющих, а также для охлаждения газов. К аппаратам сухой инерционной очистки газов относятся пылеосадительные камеры и некоторые из простейших по конструкции пыле- и золоуловителей инерционного действия, жалюзийные аппараты, циклоны в одиночном и групповом исполнении, прямоточные циклоны, батарейные циклоны, ротационные пылеуловители, дымососы-пылеуловители.

В ходе работы были изучены технологии и технологические схемы переработки зерна в муку. Также был выявлен факт загрязнения производственного помещения пылью, причиной которого в технологической схеме является зерноочистительный сепаратор типа ЗСМ. В таких условиях наиболее эффективным способом борьбы с образующейся пылью является – установка очистного оборудования.

Таким образом, была выявлена необходимость установки основного аппарата (циклона), так как он обладает следующим рядом преимуществ:

· низкая стоимость;

· незначительное ремонтное обслуживание

· небольшое падение давления.

В данном курсовом проекте был рассчитан и спроектирован циклон типа ЦН-15 У, фактическая степень очистки, которого составила 82%.


Использованная литература

1. Справочник по пыле- и золоулавливанию/М.И. Биргер, А.Ю. Вальдберг, Б.И. Мягков и др.; под общ.ред. А.А. Русанова. – 2 – е изд., перераб. и доп. – М.: Энергоатомиздат,1983.

2. Справочник «Основы конструирования и расчета технологического и природоохранного оборудования»/А.С. Тимонин т.1. - Калуга: Бочкарева, 2003.

3. Машины и аппараты пищевых производств/ Антипов С.Т., Кретов И.Т. и др.; под редакцией академика РАСХН В. А. Панфилова./ М.: Высшая школа 2001. Том 1.

4. Технология пищевых производств/ А.П. Нечаев, И.С. Шуб и др., под редакцией А.П. Нечаева./ М.: КолосС 2005.

5. Технология муки, технология крупы/ В.И. Егоров. – издательство Колосс, 2005.

6. Подьемно-транспортные машины зерноперерабатывающих предприятий/ Ф.Г. Зуев, 1985