Абсорбционные холодильные машины могут устанавливаться как самостоятельные автономные установки, так и в сочетании с установками теплоснабжения и выработки электроэнергии. Применение автономных холодильных установок может быть оправданно лишь тогда, когда холодоснабжение осуществляется круглогодично. Поскольку в большинстве случаев холодоснабжение носит сезонный (летний) характер, то более рационально осуществлять комплексное использование тепла отработавшего пара.
1.3.2 Принципиальные схемы использования теплоты производственной воды
Вода широко применяется для охлаждения конструктивных элементов огнетехнических установок, а также в производственных процессах, протекающих при низких температурах, для искусственного охлаждения технологического продукта или аппаратуры. Примерами могут служить: водяное охлаждение металлургических печей, печей химических производств; охлаждения горячей серной кислоты после контактного аппарата или конденсатора; охлаждение водой различных нефтепродуктов; охлаждение конденсаторов паровых турбин, масло- и воздухоохладителей генераторов на электростанциях, конденсаторов смешивающего типа выпарных батарей алюминиевых растворов на глиноземных заводах; охлаждение рубашек цилиндров двигателей внутреннего сгорания и т.д.
Конечная температура охлаждающей воды колеблется в интервале 293—363 К, не превышая в большинстве случаев 232—433 К.
Нагретую производственную воду можно использовать для теплоснабжения и горячего водоснабжения, агротеплофикации и для выработки электроэнергии.
Теплоснабжение. Использование нагретой производственной воды для теплоснабжения часто затруднено из-за сезонного характера отопительной нагрузки. График потребления такой воды можно несколько выровнять, внедряя горячее водоснабжение. Большие избытки неиспользованной нагретой воды, особенно в летний период, рационально утилизировать в абсорбционно-холодильных установках.
Возможным вариантом использования производственной воды для теплоснабжения является нагревание вентиляционного воздуха, поступающего в производственные помещения. Интересны комбинированные схемы, предусматривающие одновременное использование охлаждающей воды и какого-либо другого вида ВЭР, например использование тепла горячего воздуха из колчеданных печей и тепла охлаждающей воды из сернокислотных холодильников. По этой схеме (рис. 1.6) горячий воздух из валов колчеданных печей 1 с температурой 473 К используют в первой зоне теплообменника 2 для нагрева воды на нужды централизованного теплоснабжения комбината и жилого поселка. Температура горячего воздуха после теплообменников составляет 343 К.
Рис. 1.6 - Комбинированная схема использования тепла горячего воздуха охлаждающей воды [1]
Охлаждающую воду из сернокислотных холодильников используют для восполнения утечек из тепловых сетей и покрытия нагрузок горячего водоснабжения поселка и комбината. Воду для охлаждения кислоты подают из реки в холодильники 3, в которых она нагревается до 313 К. Затем отправляют в промежуточный сборный бак 4, откуда насосом перекачивают к водоподготовительной установке 5. После очистки от механических примесей устранения временной жесткости и деаэрации подпиточную воду подают в теплообменник 2, где она подогревается до 335 К. Подпиточную и обратную воду после смешения подают насосом во вторую зону теплообменника 2, где она подогревается до 355 К и поступает в тепловые сети.
1.4 Тепловые аккумуляторы
Экономичность и техническая возможность использования ВЭР зависит от того, насколько производство и потребление энергии соответствует друг другу. Однако в условиях эксплуатации возникает несоответствие между производством и потреблением энергии. Это вызывает большие потери и технические затруднения в работе установок.
Выравнивание эксплуатационных условий теплосиловых и теплоиспользующих установок в значительной мере обеспечивается аккумулированием тепла в виде пара, горячей или теплой воды в аккумуляторах тепла. В общем случае несоответствие между производством и потреблением энергии может быть вызвано непостоянством притока и колебаниями расхода ее потребителями.
Аккумуляторы тепла в зависимости от состояния аккумулирующей среды бывают паровые, пароводяные и водяные[1].
Паровые аккумуляторы работают без воды, и аккумулирование происходит только за счет изменения объема аккумулятора при постоянном давлении пара (колокольные аккумуляторы) или за счет изменения давления пара при постоянном объеме аккумулятора (купольные аккумуляторы). Паровые аккумуляторы рассчитаны на давление 0,1—0,2 МПа. Они очень громоздки, так как их размеры зависят от удельного объема аккумулируемого пара, который очень высокий при низких давлениях. Высокая первоначальная стоимость и значительные тепловые потери делают эти аккумуляторы нерентабельными, и в настоящее время они не применяются.
Пароводяные аккумуляторы аккумулируют пар конденсацией с помощью воды в момент повышения давления в аккумуляторе. Аккумулятор разряжается испарением воды при понижении давления в аккумуляторе, поэтому они называются аккумуляторами понижающегося давления.
Водяные аккумуляторы аккумулируют теплую или горячую воду при постоянном давлении. Водяные аккумуляторы бывают циркуляционного и вытесняющего типа. В аккумуляторах циркуляционного типа изменение степени зарядки происходит за счет изменения количества находящейся в аккумуляторе воды, в аккумуляторах вытесняющего типа — за счет изменения в нем количества горячей воды, вытесняемой холодной водой или наоборот. Водяные аккумуляторы сами пар не отдают, а включены лишь в систему подогрева воды. Эти аккумуляторы способны снимать пики нагрузки большой длительности в связи с большой удельной аккумулирующей способностью объема. Пароводяные аккумуляторы могут экономично покрывать пики нагрузки продолжительностью только в несколько часов.
Пароводяные аккумуляторы. К числу широко применяемых аккумуляторов понижающего давления относятся пароводяные аккумуляторы Рато и Рутса.
Термодинамические основы работы этих аккумуляторов состоят в том, что каждому значению давления насыщенного пара соответствует строго определенная температура. При изменении давления смеси воды и пара должна измениться и температура этой смеси до температуры насыщения при новом давлении. При повышении давления часть пара конденсируется к выделившаяся теплота парообразования вызывает повышение температуры. При понижении давления снижается температура смеси и освобождающееся тепло служит для испарения части воды. Однако, несмотря на тождественность принципа действия, эти аккумуляторы отличаются не только конструктивным оформлением, но и областью применения.
Аккумуляторы Рато предназначены для выравнивания колебаний в поступлении отработавшего пара от машин периодического действия и машин, работающих с переменной нагрузкой, при использовании его в установках с постоянной нагрузкой. Эти аккумуляторы работают при низких давлениях (ниже 0,2 МПа) и при перепаде давления у аккумулятора от 0,2 до 0,1 МПа (обычно 0,12—0,1 МПа), обладают небольшой выравнивающей способностью. Таким образом, аккумуляторы Рато используются в узкой области для выравнивания мгновенных колебаний паровой нагрузки. Их работа аналогична работе, выполняемой маховиком в периодически действующих машинах.
Водяные аккумуляторы. Основным назначением водяных аккумуляторов является создание «запаса тепла» в питательной воде. В аккумуляторах вытесняющего типа это осуществляется конденсацией избыточного пара из котлов, а в аккумуляторах циркуляционного типа — непосредственным отбором горячей воды из котла в аккумулятор.
Особую группу в установках подготовки горячей воды для отопления, в производственных целях и для бытовых нужд представляют аккумуляторы, которые обогреваются как острым, так и отработавшим паром, а также используют другие виды ВЭР[1].
1.5 Использование низкотемпературных продуктов сгорания в промышленности
В связи с переходом многих стационарных установок на природный газ, продукты сгорания которого не содержат твердые частицы и оксиды серы, для использования физического тепла низкотемпературных уходящих газов можно применять более простые, дешевые и менее металлоемкие контактные теплообменники (рис. 1.7). Это дает возможность не только сократить стоимость утилизационной установки, но и обеспечивает глубокое охлаждение уходящих газов ниже точки росы, которая для сгорания природного газа составляет 50—60 °С. При этом используется не только физическое тепло уходящих газов, но и теплота конденсации содержащихся в них водяных паров.
Насадкой в контактном экономайзере служат керамические кольца Рашига размером 50*50 мм. Рабочая насадка укладывается высотой 1 м в шахматном порядке. Каплеулавливающая насадка высотой 0,2 м загружается «внавал». Вода может нагреваться в этих экономайзерах до 50—60 °С. Нагретая вода используется для производственных и бытовых нужд.
Аналогичные теплообменники можно применять для утилизации тепла уходящих газов некоторых промышленных печей, сушилок, газовых турбин и других тепловых установок, работающих на природном газе.
Рис. 1.7 - Блочный контактный экономайзер [1]:
1 — корпус; 2, 7, 10— средняя, нижняя и верхняя секции; 3 — рабочая насадка; 4 — опорная решетка рабочей насадки; 5 — патрубок подвода; 6 — штуцер отбора горячей воды; 8— опорная решетка каплеулавливающей насадки; 9— слой каплеулавливающей насадки; 11 — патрубок отвода газов