Коэффициент долговечности
находится по формуле [ф. 3.14]: но не менее 1,где
– показатель степени [с. 14]; – базовое число циклов перемены напряжений, NFlim = 4×106 циклов; – суммарное число циклов перемены напряжений, уже определены: циклов, циклов.Так как
и , то .Предел выносливости при отнулевом цикле изгиба
, выбирается в зависимости от способа термической или химико-термической обработки [приложение 2]:для шестерни с объемной закалкой из стали марки 40ХН
= 580 МПа, для колеса с улучшением стали марки 40ХН =1,75*300; = 525 МПа.Коэффициент, учитывающий влияние двустороннего приложения нагрузки
, так как одностороннее приложение нагрузки [c. 34].Тогда:
3.2 Определение расчетного изгибного напряжения
Расчетом определяют напряжение в опасном сечении на переходной поверхности зуба для каждого зубчатого колеса.
Выносливость зубьев, необходимая для предотвращения усталостного излома зубьев, устанавливают сопоставлением расчетного местного напряжения от изгиба в опасном сечении на переходной поверхности и допускаемого напряжения [ф. 5.1]:
.Расчетное местное напряжение при изгибе определяют по формуле, МПа:
,где Т – крутящий момент, Н*м;
m – нормальный модуль, мм;
z – число зубьев;
– коэффициент ширины зуба по диаметру (опреден ранее); – коэффициент, учитывающий форму зуба и концентрацию напряжений; – коэффициент, учитывающий влияние наклон зуба; – коэффициент, учитывающий перекрытие зубьев; – коэффициент нагрузки.Коэффициент
, учитывающий форму зуба и концентрацию напряжений, определяется по формуле [ф. 3.17]: ,где x3 = x4 = 0 – коэффициенты смещения;
, – так как шестерни прямозубые. Тогда: ; .Так как
> ,то дальнейший расчет будем проводить для колеса.
Коэффициент
, учитывающий перекрытие зубьев, берется равным 1.Коэффициент нагрузки
принимают по формуле [ф. 5.6]:Коэффициент, учитывающий внешнюю динамическую нагрузку [т. 4.2]:
= 1.Динамический коэффициент
определен по таблице 5.1.Коэффициент
, учитывающий неравномерность распределения нагрузки по длине контактных линий, определяется по графику [р. 3.5], в зависимости от коэффициента : = 1,15.Коэффициент
, учитывающий неравномерность распределения нагрузки между зубьями, берется равным 1.Таким образом:
.Тогда:
Сопоставим расчетные и допускаемые напряжения на изгиб:
Следовательно, выносливость зубьев при изгибе гарантируется с вероятностью неразрушения более 99 %.
При действии максимальной нагрузки
наибольшее за заданный срок службы контактное напряжение не должно превышать допускаемого [ф. 4.14] :Напряжение
[ф. 4.15] : ,где
– коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки (см. приложение 4). =1.Допускаемое контактное напряжение при максимальной нагрузке, не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя
, зависит от способа химико-термической обработки зубчатого колеса и от характера изменения твердости по глубине зуба. Для зубчатых колес, подвергнутых улучшению или закалке принимают [ф. 4.16]:где
– предел текучести, Мпа.Для стали 40ХН с закалкой
=1400 МПа;Для стали 40ХН с улучшением
=600 МПа.487,11 < 1680, зн. условие выполнено.
Прочность зубьев, необходимая для предотвращения остаточных деформаций, хрупкого излома или образования первичных трещин в поверхностном слое, определяют сопоставлением расчетного (максимального местного) и допускаемого напряжений изгиба в опасном сечении при действии максимальной нагрузки [ф. 5.16] :
.Расчетное местное напряжение
МПа, определяют по формуле[ф. 5.17] :