Смекни!
smekni.com

Расчет редуктора точного прибора (стр. 5 из 6)

Параметры модификации .профиля головки зуба исходного контура приведены в справочном приложении. Для передач, к которым предъявляются специальные требования, допускается применение исходных контуров, отличающихся от установленных настоящим стандартом, параметры которых должны устанавливаться в отраслевых стандартах. Допускается изготавливать зубчатые колеса винтовых передач в соответствии с исходным -контуром, установленным настоящим стандартом.

Зубчатые колеса рекомендуется изготавливать без модификации профиля головки зуба, если в результате модификации головки величина части коэффициента торцевого перекрытия, определяемая участками главных профилен ε ам, скажется менее 1,1 у прямозубых передач. Зубчатые колеса передач внутреннего зацепления могут изготавливаться в соответствии с исходным контуром.

При окончательной обработке боковых поверхностей зубьев зубообрабатывающим инструментом следует с практически возможным приближением обеспечивать параметры модификации и переходные кривые, при этом действительная высота модификации головки зуба должна быть не более номинальной.

В технически обоснованных случаях, при массовом и крупносерийном производстве и для передач точнее 6-й степени точности рекомендуется изменение параметров модификации применительно к частным условиям работы передачи.

5.2 Конструктивное выполнение и использование валов

dв

- диаметр вала по моменту кручения

[

kp]=(15…20) H/мм2

dв1

0,9≈1

dв2

1,1≈1

dв3

1,4≈1,5

dв4

1,8≈2

dв5

2,4≈2,5

dв6

3,4≈3

5.3 Выбор и расчет опор

ОПОРЫ ВАЛОВ И ОСЕЙ

ОБЩАЯ ХАРАКТЕРИСТИКА ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

Общие сведения. Подшипник скольжения является парой вращения, он состоит из опорного участка вала (цапфы) и собственно подшипника котором.

Их используют в качестве опор валов и осей механизмов и машин в тех случаях, когда применение подшипников качения затруднено или невозможно по ряду причин: высокие вибрационные и ударные нагрузки; низкие и особо высокие частоты вращения; работа в воде, агрессивных средах, а также при недостаточном смазывании или без смазывания; необходимость выполнения диаметрального разъема; отсутствие подшипников качения требуемых диаметров (миниатюрные и особо крупные валы) и др.

Надежность работы подшипников в значительной мере определяет работоспособность и долговечность машин.

Благодаря бесшумности и указанным выше достоинствам, а также по конструктивным и экономическим соображениям опоры скольжения находят широкое применение в паровых и газовых турбинах, двигателях внутреннего сгорания, центробежных насосах, центрифугах, металлообрабатывающих станках, прокатных станах, тяжелых редукторах и пр.

По виду трения скольжения различают:

подшипники сухого трения — работают на твердых смазочных материалах без смазочного материала;

подшипники граничного (полужидкостного) трения;

подшипники жидкостного трения

подшипники с газовой смазкой.

По виду воспринимаемой нагрузки и подшипники подразделяю на-

радиальные — воспринимают радиальную нагрузку

упорные — воспринимают осевые силы

радиально-упорные — воспринимают радиальные и осевые нагрузки; обычно их функции выполняют упорные подшипники, совмещенные с радиальными.

Цапфу, передающую радиальную нагрузку, называют шагом — при расположении ее в конце вала и шейкой — если она находится в середине вала. Цапфу, передающую осевую нагрузку, называют пятой, а подшипник подпятником.

Форма рабочей поверхности подшипников и цапф может быть цилиндрической, конической и шаровой. Конические и шаровые подшипники применяются редко.

Самое главное требование- малое трение

При выборе шарикоподшипников исходят из усилия, возникающие при зацеплении зубчатых колес.

При выборе шарикоподшипников исходят из усилий, возникающих при зацеплении зубчатых колес. Для цилиндрической передачи это усилие:

- окружное усилие

- радиальное усилие

где

Радиальная сила направлена к центру зубчатого колеса.

Подшипники выбираются в зависимости от действующих нагрузок, так как здесь действует радиальная сила. Выбор ведется по внутреннему диаметру подшипника ГОСТ 8338 – 75: получаем, что первому валу соответствует подшипник 1000091, второму валу – 1000091/1,5, третьему – 1000092, четвертому – 1000093.

Правильность выбора подшипника определяется по его динамической грузоподъемности. Для этого используется следующая формула:

- долговечность в часах

где С - динамическая грузоподъемность, n – число оборотов, Р – эквивалентная динамическая нагрузка. А Р, в свою очередь, вычисляется по формуле:

где Х – коэффициент нагрузки, V – коэффициент вращения, Кб – коэффициент безопасности, КТ – температурный коэффициент.

Для прямозубых цилиндрических передач:

Х = V = Кб = КТ =1,

- грузоподъемность,

Вычислим окружное усилие, радиальное усилие, грузоподъемность и результаты запишем в таблицу 3

№ колеса Окружное усилие, Н Радиальное усилие, Н Грузоподъемность, Н
1 6 2,18 25,6
2 13 4,73 55,5
3 33 12 140,8
4 93 34 399,16

Ft= 2Mкр/d – окружное усилие

Ft1= 2*0,0025/0,001= 5

Ft2 2*0,0045/0,001= 9

Ft3 2*0,009/0,0015= 12

Ft4 2*0,0198/0,002= 19,8

Ft5 2*0,04752/0,0025= 38,016

Ft6 2*0,133056/0,003= 88,704

F

= Ft·tg
– радиальное усилие

F

1= 5·tg20= 1,82

F

2= 9·tg20= 3,28

F

3= 12·tg20= 4,37

F

4= 19,8·tg20= 7,21

F

5= 38,016·tg20= 13,84

F

6= 88,704·tg20= 32,29

Для прямозубых цилиндрических передач:

X=V= Kб= Kt=1

C=F

6

L=104 час

C

Cтабл

C1=1,82

6=0,005

C2=3,28

6=0,0075

C3=4,37

6=0,01

C4=7,21

6=0,019