Зависимость максимальной частоты от напряжения на коллекторе показана на рисунке 4.1
Рисунок 4.1 зависимость максимальной частоты от напряжения на коллекторе
5.1 Структура транзистора
Структура дрейфового транзистора предоставлена на рисунке 5.1.
Масштаб 1000:1.
5.2 Описание технологии получения дрейфового транзистора
В исходном кремнию n-типа ( ρ=0,5...1 Ом*см ) путем диффузии создается соединительный слой р-проводимости. Для уменьшения размеров перехода n-слой создается только в углублениях (лунках). Затем в углубление кладутся два кусочка сплава, и производится термообработка. При этом происходит расплавление сплавов, проплавление соединительного слоя и диффузия примесей из расплава в исходный кремний.
Первая (эмиттерная) капля содержит примеси n- и р-типов. Под ней после диффузии создается n-p-n-структура. Донорная область под каплей сплава используется как эмиттер, узкий средний слой р-типа образует активную область базы, исходный n-кремний образует область коллектора.
Вторая капля сплава содержит только р-примеси. Она создает омический контакт с соединительным слоем и вывод базовой области. В случае проплавления р-слоя эта капля создает p-n-переход с исходным кремнием.
Структура n-p-n, получающаяся в результате сплавления диффузии, используется для создания транзистора [3].
Рисунок 5.1 структура дрейфового транзистора
ЗАКЛЮЧЕНИЕ
В результате выполнения данной курсовой работы были рассчитаны параметры П-образной эквивалентной схемы транзистора включенного по схеме с ОЭ для НЧ и ВЧ.
Получена зависимость максимальной частоты от напряжения коллектор-эмиттер.
С увеличением напряжения максимальная частота увеличивается.
Кратко описана технология изготовления дрейфового транзистора, а также предоставлена структура n-p-n-перехода к рассчитываемому транзистору.
ПЕРЕЧЕНЬ ССЫЛОК
1. Трутко А. Ф. Методы расчета транзисторов. М., «Энергия», 1971
2. Дрейфовые транзисторы. М., «Советское радио», 1964
3. Основы теории транзисторов. Спиридонов Н. С. «Техника», 1969.