Смекни!
smekni.com

Расчет технологических, теплотехнических и конструктивных параметров машин непрерывного литья заготовок (стр. 5 из 7)

В случае радиальной машины разгиб слитка, как правило, проводится полностью в затвердевшем состоянии в одной точке.

Одним из способов предотвращения образования дефектов при разгибе слитка является при всех прочих равных условиях увеличение радиуса кривизны, что позволяет снизить величину деформации и ее скорость. На основании опыта эксплуатации радиальных МНЛЗ и исследования влияния величины и скорости деформации при разгибе на качество непрерывного слитка ПО «Урал-маш» выработало практические рекомендации для выбора минимального базо-вого радиуса в зависимости от толщины слитка:

Толщина слитка а, мм……………..….£150 £200 £250 £315 £350

Базовый радиус Ro, м 5 6 8 10 12

Однако, как показывает опыт эксплуатации радиальных установок, при отливке различных марок сталей в ряде случаев приходится снижать скорость разливки стали из-за появления внутренних горячих трещин в металле при его разгибе. Это обусловлено тем, что к точке разгиба слиток приходит с температурой в его центральной части, близкой к температуре кристаллизации. В области этих температур существует так называемый высокотемпературный интервал хрупкости, характеризуемый резко выраженным «провалом» прочностных и пластических свойств металла. Для многих сталей он проявляется при температурах ³13000 С и выше. Так, предел прочности углеродистой стали в температурном интервале хрупкости снижается до 1...10 МПа. Поэтому для предотвращения образования внутренних трещин необходимо при разгибе снижать скорость и величину деформации слоев металла, находящихся в температурном интервале хрупкости.

Исследования механических свойств стали при 1300…14500 С позволили получить уравнение для оценки допустимого базового радиуса технологической оси МНЛЗ с разгибом в одной точке в зависимости от разливаемой марки стали и интенсивности охлаждения:

(4.1)

где а –толщина слитка, м; w – скорость вытягивания слитка,м/мин; k –ко-эффициент затвердевания [для прямоугольных (плоских) слитков с большим отношением b/a (ширины к толщине) k=24…26 мм/мин0,5; для квадратных и круглых k=28…30 мм/мин0,5]; eд – величина допустимой деформации слоев металла в температурном интервале хрупкости [для малоуглеродистого, мелкозернистого металла можно принять eд=(0,5…0,8)*10-2; для среднеуглеродистого и легированного металла eд=(0,3…0,5)*10-2 и для высокоуглеродистого и сложно-легированного eд=(0,15…0,3)*10-2]; q – коэффициент,учитывающий интенсивность охлаждения слитка в ЗВО [q=0,7…0,85; меньшее значение относится к умеренной интенсивности, высокое к большей].

Следует отметить, что в реальных условиях при определении Ro необходимо корректировать скорость разливки и интенсивность охлаждения для стали конкретной марки.

Определим базовый радиус установки непрерывной разливки стали.

Принимаем для данного сортамента следующие исходные данные: допустимая деформация внутренних слоев в температурном интервале хрупкости eд£0,005; интенсивность охлаждения – умеренная, q=0,75; скорость вытягивания слитка w=1,3 м/мин; коэффициент кристаллизации k=0,03 м/мин.

Базовый радиус

При базовом радиусе МНЛЗ Ro=5 м участок затвердевания (металлургическая длина) машины составит:

Полное время затвердевания заготовки сечением a´b–175´175 мм2 составит t=а2/4k2=1752/(4*302) = 8,5 мин.

Необходимая минимальная металлургическая длина при скорости вытягивания слитка w=1,3 м/мин составит

Следовательно, необходимо или увеличить радиус машины или уменьшить скорость вытягивания слитка. Сохраняя скорость вытягивания слитка w=1,3 м/мин, так как она определяет производительность установки, принимаем базовый радиус установки Ro=9 м. При этом радиусе LЗВО составит ~14,13 м, что обеспечит запас длины для возможного увеличения времени затвердевания более 25%.

4.2 Выпрямление непрерывнолитой заготовки

Кристаллизующийся непрерывнолитой слиток постоянно находится под действием внешних сил, величина и характер которых определяются конструктивными параметрами МНЛЗ. Поэтому, для непрерывнолитого слитка характерно одновременное существование условий кристаллизации и деформирования, что определяет возможность образования дефектов, имеющих различную природу.

Одним из серьезных дефектов непрерывнолитых слитков являются внутренние горячие трещины.

Причинами, вызывающими образование внутренних трещин, могут быть усадочные или термические напряжения, а также воздействие внешних сил, характер и величина которых зависят от конструктивных параметров МНЛЗ.

Образование внутренних трещин под действием термических напряжений может быть минимизировано за счет правильно организованного вторичного охлаждения заготовок.

Повышенные деформация НЛЗ могут происходить, также, при выпучи-вании корочки слитка от ферростатического давления, под действием растягивающих нагрузок при вытягивании формирующегося, при обжатии не полностью кристаллизовавшегося слитка валками тянущей клети, а также при изгибе и выпрямлении заготовки в двухфазном состоянии.

Ряд принятых конструктивных решений позволил ограничить деформа-цию непрерывнолитого слитка.

Выпрямление непрерывнолитого слитка - это технологически необходимая операция на машинах непрерывного литья заготовок криволинейного типа.

Конструктивные решения таких важных узлов МНЛЗ как кристаллизатор, опорные роликовые секции ЗВО позволяют достичь на современных сортовых установках скорости вытягивания заготовок более 5 м/мин.

При этом глубина лунки жидкого металла может значительно превышать длину участка МНЛЗ с постоянным радиусом кривизны.

При выпрямлении непрерывнолитого слитка с жидкой сердцевиной, теплофизические условия кристаллизации и охлаждения оказывают влияние на процесс образования внутренних трещин.

От того, как должна быть построена зона правки, обеспечивающая деформацию слитка в двухфазном состоянии без образования трещин, зависит выбор типа МНЛЗ, предназначенных для производства заготовок из высококачествен-ных сталей.

Условия образования трещин при правке непрерывнолитого слитка отличаются от условий образования трещин при усадке, так как при правке образование трещин происходит под действием растягивающих напряжений и связанной с ними деформацией, вызываемых внешними силами. Поэтому характер и величину деформации можно изменять за счет конструктивных параметров МНЛЗ, таких как радиус кривизны и длина радиального участка, кривизны и длины участка выпрямления и т.д.

Критерием образования трещин при правке и выборе рациональной кривой выпрямления является зависимость, представленная в виде:

e £ e* (Т)

где: e - фактическая относительная деформация выбранного слоя;

e* - допустимая относительная деформация для данной марки стали при температуре Т°.

Данный критерий основан на экспериментальных работах в области изучения горячих трещин в стальных слитках.

Недостатком предложенного критерия является то, что он не учитывает кинетику развития внутренних деформаций и изменения деформационной способности кристаллизующегося металла, то есть не учитывает, что при кристаллизации одновременно протекают взаимосвязанные процессы – процесс агрегатного превращения, обуславливающий непрерывное изменение механических свойств и процесс накопления деформаций.

Исследование механических свойств различных сталей при высоких температурах обнаруживает важную закономерность:

все стали в определенном интервале температур имеют резко выраженный провал прочности и пластичности. Этот интервал, названный температурным интервалом хрупкости, характеризуется низкими значениями механических характеристик, имеет различную величину и зависит от химического состава стали.

Условие, при котором с уменьшением скорости деформации предельно допустимые деформации увеличиваются, явилось основной предпосылкой выпрямлять не полностью затвердевший слиток не в одной точке, а на участке зоны вторичного охлаждения некоторой длины, чтобы значительно уменьшить скорость деформации.

Рассчитаем кривую плавного выпрямления слитка с жидкой сердцевиной сечением а´в=175´175 мм2 при отливке среднеуглеродистых и легированных сталей. Базовый радиус кривизны радиального участка R0=9 м, скорость вытягивания слитка 1,3 м/мин, расстояние между точками правки t=1 м.

Принимаем коэффициент кристаллизации k=30 мм/мин0,5 и коэффициент интенсивности охлаждения

=0,75, точку перехода от радиального участка к криволинейному при относительной толщине закристаллизовавшейся оболочки (отношение двух толщин корки к толщине заготовки) с=0,6, допустимую деформацию eд=0,005.

Полное время кристаллизации слитка составит:

мин.

При с=0,6 толщина закристаллизовавшейся оболочки к моменту разгиба слитка будет:

мм.
Время движения слитка к точке разгиба

мин.

Расстояние от нейтральной оси до опасного слоя:

у=dq=52,5*0,75=39,38 мм; у=0,0394 м.

Время нахождения деформируемого слоя в температурном интервале хрупкости:

мин.