Рассчитаем параметры схемы замещения двигателя при пуске, с учетом влияния вытеснения тока и насыщения магнитной цепи.
Высота стержня клетки ротора:
Приведенная высота стержня ротора:
По графику на рисунке 9-23 [1] определяем коэффициент
.Расчетная глубина проникновения тока в стержень:
Ширина стержня на расчетной глубине проникновения тока:
Площадь поперечного сечения стержня при расчетной глубине проникновения тока:
Коэффициент вытеснения тока:
Активное сопротивление стержня клетки для пускового режима:
Активное сопротивление обмоткиротора приведенное к обмотке статора:
По графику на рисунке 9-23 [1] определяем коэффициент
.Коэффициент проводимости рассеяния паза ротора при пуске:
Коэффициент проводимости рассеяния обмотки ротора при пуске:
Индуктивное сопротивление рассеяния двигателя, зависящее от насыщения:
Независящее:
Активное сопротивление короткого замыкания при пуске:
Рассчитаем пусковой ток и момент.
Ток ротора при пуске:
Полное сопротивление схемы замещения при пуске (с учетом эффекта вытеснения тока и насыщения путей потоков рассеяния):
Индуктивное сопротивление схемы замещения при пуске:
Активная составляющая тока статора при пуске:
Реактивная составляющая тока статора при пуске:
Фазный ток статора при пуске:
Кратность начального пускового тока:
Активное сопротивление ротора при пуске, приведенное к статору, при расчетной рабочей температуре и Г-образной схеме замещения:
Кратность начального пускового момента:
2.12 Расчет механической характеристики двигателя и зависимости пускового тока от скольжения
Расчет механической характеристики в диапазоне скольжений от 0 до критического производим по формуле Клосса. Имея значения максимального и пускового моментов и значение момента при s=0.5, можно достаточно точно построить механическую характеристику в диапазоне скольжений от 0 до 1.
Для того, чтобы определить значение момента при s=0.5 построим круговую диаграмму двигателя для данного скольжения, учитывая соответствующее уменьшение индуктивных сопротивлений (в отличии от номинального режима) и увеличения сопротивления r211. Построение диаграммы ведем по методу, изложенному в параграфе 14-12 [2].
Масштаб по току принимаем: СТ=1.5 А/мм;
Тогда масштаб мощности:
Диаметр рабочего круга:
Расстояния GH, GF, GE соответственно:
200·ρ1=2.22мм
100r11/xk=23.5/1.46=16.1 мм
100rкп/xk= 0.58/1.46=39.7мм
Проводим через точкуО и Е, О и А линии механических мощностей и электромагнитных моментов, соответственно.
Отношение моментов будет равно отношению КК1/LL1.
Отношение токов: O1K/O1L.
Рис.6. Круговая диаграмма двигателя при s=0.5
Таким образом, кратность моментов равна 1.6.
Кривую тока строим по 4 точкам:
s=0: Ixp/I1=0.36;
s=0.023: I/I1=1.0;
s=0.5: I/I1=4.7 (покруговойдиаграмме);
s=1.0: Ixp/I1=5.3;
Графики механической характеристики двигателя и зависимости тока от скольжения приведены в Приложении.
2.13 Тепловой и вентиляционный расчеты
Проектируемый двигатель имеет изоляцию класса F. Тепловой расчет проводят для наиболее неблагоприятных условий работы – температуру обмоток принимаем 140 градусов. Соответственно коэффициент mT=1.48.
Потери в обмотке статора при максимальной температуре:
Условная внутренняя поверхность охлаждения активной части статора:
Условный периметр поперечного сечения трапецеидального полузакрытого паза:
Условная поверхность охлаждения пазов:
Условная поверхность охлаждения лобовых частей:
Число ребер на станине 36, высота ребра 30мм.
Условная поверхность охлаждения двигателя:
Удельный тепловой поток от потерь в активной части обмотки и от потерь в стали, отнесенных к внутренней поверхности охлаждения активной части статора:
Удельный тепловой поток от потерь в активной части обмотки, отнесенных к внутренней поверхности охлаждения пазов:
Удельный тепловой поток от потерь в лобовых частях обмотки, отнесенных к внутренней поверхности охлаждения пазов:
Окружная скорость ротора:
Превышение температуры внутренней поверхности активной части статора над температурой воздуха внутри машины:
(по рисунку 9-24)Перепад температуры в изоляции паза и катушек из круглых проводов:
Превышение температуры наружной поверхности лобовых частей обмотки над температурой воздуха внутри двигателя:
Перепад температуры в изоляции лобовых частей катушек из круглых проводов:
Среднее превышение температуры обмотки над температурой воздуха внутри двигателя:
Потери в обмотке ротора, при максимальной допускаемой температуре:
Потери в двигателе со степенью защиты IP44, передаваемые воздуху внутри двигателя:
Среднее превышение температуры воздуха внутри двигателя над температурой наружного воздуха:
( по рисунку 9-25).Среднее превышение температуры обмотки над температурой наружного воздуха:
.Вентиляционный расчет двигателя.
Наружный диаметр корпуса машины:
Коэффициент, учитывающий изменение теплоотдачи по длине корпуса двигателя:
Необходимый расход воздуха:
м3/с |