Смекни!
smekni.com

Редуктор двухступенчатый соосный двухпоточный (стр. 4 из 6)

Схема усилий, действующих на быстроходный вал представлена на рис.2.

Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] σв=730Н/мм2;

Н/мм2;
Н/мм2;
Н/мм2.

Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:

где [τк]=(20…25)Мпа

Принимаем [τк]=20Мпа.

;
мм.

Принимаем окончательно с учетом стандартного ряда размеров Rа5 (ГОСТ6636-69):

мм.

Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.

мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр для заплечиков;

мм – диаметр вала-шестерни;

b1=22мм.

Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по

мм подшипник №101, у которого Dп=28мм; Вп=8мм [4,табл.К27].

Выбираем конструктивно остальные размеры:

W=14мм; lм=16мм; l1=25мм; l=60мм.

Определим размеры для расчетов:

l/2=30мм;

с=W/2+ l1+ lм/2=40мм – расстояние от оси полумуфты до оси подшипника.

Проводим расчет быстроходного вала на изгиб с кручением.

Рис.5 Приближенная конструкция быстроходного вала

Заменяем вал балкой на опорах в местах подшипников (см. рис.6). Назначаем характерные точки 1,2, 3 и 4.

Определяем реакции в подшипниках в вертикальной плоскости.

ΣМ2y=0; RАy·0,06-Fr1·0,03=0

RАy= 60,7·0,06/ 0,03;

RАy= RВy=121Н.

Определяем изгибающие моменты в характерных точках:

М=0;

М=0;

М= RАy·0,03;

М =3,6Нм2;

М=0;

Строим эпюру изгибающих моментов Му, Нм2 (рис.6).

Определяем реакции в подшипниках в горизонтальной плоскости.

ΣМ4x=0; Fm1·0,1- RАx·0,06+ Ft1·0,03=0;

RАx= (130·0,1+ 166,7·0,03)/ 0,06;

RАx=300Н;

Рис.6 Эпюры изгибающих моментов быстроходного вала

ΣМ2x=0; Fm1·0,02- Ft1·0,03+ RВx·0,06=0;

RВx= (166,7·0,03- 130·0,02)/ 0,06;

RВx=40Н

Определяем изгибающие моменты:

М=0;

М2= -Fm2·0,04

М=-130·0,04;

М=-5,2Нм;

М3хсправа=-Fm1·0,1+RВх ·0,03;

М3хсправа==-130·0,1+40 ·0,03;

М3хсправа=-11,7Нм;

М=- RАх ·0,03;

М=- 300 ·0,03;

М=- 9;

М=0;

Строим эпюру изгибающих моментов Мх.

Крутящий момент

Т1-1= Т2-2= Т3-3= T3=3,4Нм;

T4-4=0.

Определяем суммарные радиальные реакции [4,рис 8.2]:

;
;

;
Н;

;
Н.

Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:

;
;
Нм2.

Эквивалентный момент:

;
;
Нм2.

5.3 Расчет промежуточного вала

Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] σв=730Н/мм2;

Н/мм2;
Н/мм2;
Н/мм2.

Определяем диаметр выходного конца вала из расчёта на чистое кручение

;

где [τк]=(20…25)Мпа [1,c.161]

Принимаем [τк]=20Мпа.

;
мм.

С учетом того, что выходной конец промежуточного вала является валом-шестерней с диаметром выступов 24мм, принимаем диаметр вала под подшипник 25мм.

мм.

Намечаем приближенную конструкцию промежуточного вала редуктора (рис.7), увеличивая диаметр ступеней вала на 5…6мм

Рис.7 Приближенная конструкция промежуточного вала

dст=30мм;

х=8мм;

W=20мм;

r=2,5мм;

dв=28мм.

Расстояние l определяем из суммарных расстояний тихоходного и быстроходного валов с зазором между ними 25…35мм.

l=60+30+30=120мм.

l1=30мм; l2=30мм.

Предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по dп=25мм подшипник №105, у которого Dп=47мм; Вп=12мм [4, табл.К27].

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у)

Определяем реакции в подшипниках в вертикальной плоскости.

åМСу=0;

-RDу·0,09+Fr1·0,03+Fr2·0,12=0

RDy=(368·0,03+60,7·0,12)/ 0,09;

RDy==204Н.

åМDу=0;

RCy·0,09- Fr1·0,06+ Fr2·0,03=0;

RCy=(368·0,06-60,7·0,03)/ 0,09;

RCy=225Н.

Назначаем характерные точки 1, 2, 3, и 4 и определяем в них изгибающие моменты:

М=0;

М=-RCy·0,03;

М=-6Нм;

М3услева=-RCy·0,09+Fr1·0,06;

М3услева=-16,6Нм

М3усправа= Fr2·0,03;

М3усправа= 11

М=0;

Строим эпюру изгибающих моментов Му, Нм (рис.8).

Определяем реакции в подшипниках в горизонтальной плоскости.

åМСх=0;

RDx·0,09-Ft1·0,03-Ft2·0,12=0;

RDx=( 166,7·0,03+ 1012·0,12)/0,09;

RDx=1404Н;

åМDх=0;

RCx·0,09+ Ft1·0,06-Ft2·0,03=0;

RCx=(1012·0,03+166,7·0,06)/ 0,09;

RCx=337Н.

Назначаем характерные точки 1, 2, 3 и 4 и определяем в них изгибающие моменты:

М1x=0;

М2x=-RCx·0,03;

М2x=-10Нм;

М3xслева= -RCx·0,09-Ft1·0,06;

М3xслева=-91Нм;

М3xсправа= Ft2·0,03;

М3xсправа=5Нм;

М=0.

Строим эпюру изгибающих моментов Му, Нм (рис.8)


Рис.8 Эпюры изгибающих и крутящих моментов промежуточного вала.

Крутящий момент

Т1-1=0;

Т2-2=-Т3-3=- T2/2=-4,3Нм;

Т4-4=0.

Определяем суммарные радиальные реакции [4,рис 8.2]:

;
;

;
Н;

;
Н.

Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:

;
;
Нм.

Эквивалентный момент:

;
;
Нм.

Все рассчитанные значения сводим в табл.5.

Таблица 5 Параметры валов