и к касательным напряжениям t с заменой в формулах символа s на t.
Во всех реальных деталях имеются микротрещины, включения, несплошности, нарушения структуры, т.е. дефекты. При переменных напряжениях микротрещины (и другие дефекты), развиваясь (с наработкой числа циклов), приводят к усталостной трещине, которая проникает в глубь сечения и вызывает усталостное разрушение детали. Процесс накопления повреждений называют усталостью. Усталостное разрушение происходит при меньших напряжениях, чем sВ или sТ.
1.3.2 Пределы выносливости
Циклическая долговечность материалов при переменных напряжениях характеризуется кривыми усталости (кривыми Велера). Кривые усталости (рис. 1.4) получают экспериментально на стандартных образцах, задавая им различные величины напряжений smax и фиксируя число циклов N, при которых происходит разрушение образцов.
Уравнение кривой усталости: siqNi = C,
где С – постоянная, соответствующая условиям проведения эксперимента.
Пределом выносливости материала называют максимальное напряжение, которое может выдержать образец материала при наработке заданного числа циклов.
Как показывает опыт, кривые усталости имеют два характерных участка: левый наклонный и правый горизонтальный (рис. 1.4). Абсциссу точки перелома Nlim (NG) кривой усталости называют базовым числом циклов, а соответствующий ему предел выносливости – пределом длительной выносливости (или базовым) slimb (sR). Например, для образцов черных металлов Nlim = 107, для цветных сплавов Nlim = (5…10) 107.
На рис. 2.1 указаны: d – номинальный (наружный) диаметр резьбы; l – длина болта, винта, шпильки; l0 – длина нарезанной части стержня под гайку; l1 – глубина завинчивания; l3 – выход стержня за гайку; = 6P – недорез резьбы; х = (2…2,5) Р – сбег резьбы; Н – высота гайки; Н1, Н2 – толщины деталей; s – толщина шайбы; dh – диаметр отверстия в деталях под стержень винта; Р – шаг резьбы.
По характеристикам статической прочности крепежные детали разделяют на классы прочности и группы.
Для стальных болтов, винтов и шпилек по ГОСТ 1759.4–87 предусмотрено 11 классов прочности: 3.6; 4.6; 4.8; 5.6; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9 (цифры условно обозначим a.b). Первое число а, умноженное на 100, представляет собой номинальное значение временного сопротивления sВ, МПа, материала резьбовой детали. Произведение a×b×10 – номинальное значение предела текучести sТ, МПа. Второе число – b×10 = sТ / sВ% – степень пластичности материала. Например, болт класса прочности 6.8: sВ = 6×100 = 600 МПа; sТ = 6×8×10 = 480 МПа; sТ / sВ = 8×10 = 80%.
Для стальных гаек с высотой, равной или более 0,8d, по ГОСТ 1759.5–87 установлены 7 классов прочности: 4, 5, 6, 8, 9, 10, 12. Число, умноженное на 100, показывает напряжение от испытательной (пробной) силы, МПа.
Существует правило, что разрыв в соединении должен быть по резьбе стержня болта. Отсюда число класса прочности гайки показывает наибольший класс прочности болта (первую цифру), с которым данная гайка может использоваться в соединении. Например, гайка класса прочности 5 может применяться с болтом класса прочности не выше 5.8.
Крепежные изделия в зависимости от условий эксплуатации могут быть изготовлены с защитным покрытием или без покрытия. Обозначение покрытий от 00 до 13. Например, 00 – без покрытия; 01 – цинковое с хроматированием; 02 – кадмиевое с хроматированием; 05 – окисное; 12 – серебряное; 13 – никелевое.
2.2 Краткие сведения из теории резьбовой пары
1. Момент завинчивания и осевая сила на винте
Подавляющее большинство резьбовых соединений с предварительной затяжкой. Затяжка создается при сборке с целью, чтобы после приложения рабочей нагрузки не происходило раскрытия стыка или сдвига соединяемых деталей.
При завинчивании гайки (или винта с головкой) необходимо приложить момент завинчивания Тзав (рис. 2.2) для преодоления момента ТР сопротивления в резьбе и момента ТТ сопротивления на торце гайки:
Тзав = ТР + ТТ, (2.1)
где TP = Ft d2 / 2 = 0,5 Fзатd2tg(y + j1); (2.2)
ТТ = 0,5 FзатfTdср, (2.3)
В формулах (2.2) и (2.3): Ft – окружная (в плоскости, перпендикулярной к оси соединения) движущая сила; Fзат – осевая сила затяжки; d2 – средний диаметр резьбы; y – угол подъема резьбы; j1 – приведенный (с учетом влияния угла профиля α) угол трения в резьбе: j1 = j / cos(a/2), φ – угол трения материалов пары винт – гайка; fT – коэффициент трения материалов пары гайка – деталь; dср – средний диаметр кольца (рис. 2.2): dср = 0,5 (D + dh).