Введение
Любая машина или механизм состоят из деталей, соединенных в сборочные единицы.
Деталь – это изделие, изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Например, болт, шестерня, вал, литой корпус и т.д.
Сборочная единица (узел) – изделие, детали которого подлежат соединению между собой сборочными операциями на предприятии-изготовителе. Например, подшипник, сварной корпус, редуктор, автомобиль, станок, корабль, авторучка и т.д.
Две или более сборочные единицы, не соединенные на предприятии-изготовителе сборочными операциями, но предназначенные для выполнения взаимосвязанных функций, называются комплексом. Например, станочная линия, автоматизированный склад, ракетный пусковой комплекс и т.д.
Среди большого разнообразия деталей и узлов есть такие, которые используют почти во всех (или во многих) машинах: крепеж, валы, подшипники, редукторы, муфты и т.д. Такие детали (узлы) называют деталями машин общего назначения. Их изучением, расчетом и конструированием занимаются в курсе «Детали машин и основы конструирования». Другие детали (узлы) встречаются только в определенных типах машин. Например, колеса, гусеницы, коленчатые валы, суппорты, крюки, штампы и т.д. Они называются деталями специального назначения и изучаются в спецкурсах.
1. Расчет деталей машин
1.1 Ряды предпочтительных чисел
Стандарт (ГОСТ) – это технический закон, соблюдение которого является безоговорочным и обязательным.
Одной из основ стандартизации являются ряды предпочтительных чисел, получившие широчайшее применение в машиностроении для размеров, передаточных чисел, нагрузок, мощностей, скоростей и других параметров.
По ГОСТ 8032–84 принято пять рядов чисел геометрической прогрессии (наиболее экономически выгодной) со знаменателем j = 101/ n, которые обозначают буквой R (по имени автора, Шарля Ренара, 1879 г.) и цифрой показателя n:
n | 5 | 10 | 20 | 40 | 80 |
φ | 1,6 | 1,25 | 1,12 | 1,06 | 1,03 |
ряд | R5 | R10 | R20 | R40 | R80 |
Наиболее распространенным является «средний» ряд чисел R20:
1 | 1,12 | 1,25 | 1,4 | 1,6 | 1,8 |
2 | 2,24 | 2,5 | 2,8 | 3,15 | 3,55 |
4 | 4,5 | 5 | 5,6 | 6,3 | 7,1 |
8 | 9 | 10. |
Предпочтительные числа других порядков можно получить переносом запятой в любую сторону, т.е. умножением на 10, 102… 10–2, 10–1 и т.д.
На основе рядов предпочтительных чисел построены стандарты конкретных объектов. Например, по ГОСТ 6636–69 ряды нормальных линейных размеров обозначают Ra (Ra10, Ra20 и т.д.).
Зная числа рядов, можно иметь «в голове» параметры многих стандартов.
1.2 Основные критерии работоспособности деталей машин
Критерий – это «мерило значения чего-либо», граница допустимости решения, ограничение целевой функции.
Важнейшими критериями работоспособности деталей машин являются прочность, жесткость, износостойкость, теплостойкость, вибрационная устойчивость.
При конструировании работоспособность деталей обеспечивают выбором материала и расчетом размеров по основному критерию. Выбор критерия обусловлен характером воздействия нагрузки, среды и вызываемым видом отказа.
В настоящее время самым распространенным критерием работоспособности является прочность.
Прочность – это способность детали сопротивляться разрушению или потере формы под действием приложенных к детали нагрузок. Этому критерию должны удовлетворять все детали и узлы.
На основании принципа независимости действия сил любое сложное напряженное состояние можно разложить на простые виды: растяжение, сжатие, изгиб, сдвиг (кручение), срез – это внутренние напряжения в сечениях деталей.
На поверхности соприкосновения (контакта) двух деталей под нагрузкой возникают поверхностные напряжения. Если размеры площадок контакта одного порядка с другими размерами деталей, то говорят о напряжениях смятия sсм. Если хотя бы один из размеров площадки контакта существенно мал по сравнению с другими размерами, то возникают контактные напряжения.
Исследованием контактных напряжений занимался Генрих Герц (Hertz). В его честь эти напряжения обозначают с индексом «Н»: sН, τН.
В «Теории упругости» различают две контактные задачи:
а) с первоначальным (до приложения нагрузки) контактом по линии,