Смекни!
smekni.com

Реконструкция котла - утилизатора КСТ-80 (стр. 16 из 24)

где

- наружный диаметр трубы, м;

- коэффициент теплоотдачи от стенки трубы к изоляции, Вт/м2׺С.

(22)

где

- теплопроводность стенки трубы, Вт/м׺С;

(23)

где

- теплопроводность тепловой изоляции, Вт/м׺С;

- диаметр тепловой изоляции, м.

Величина

, связана уравнением теплоотдачи с заданной температурой наружной поверхности изоляции:

(24)

где

- температура наружной поверхности изоляции.

Необходимое значение диаметра тепловой изоляции определяется из совместного решения уравнений (18) и (24).

2.5.1 Тепловой расчет наружного участка паропровода

Принимаем следующие исходные данные:

внутренний диаметр трубы - 351 мм;

наружный диаметр трубы - 377 мм;

коэффициент теплоотдачи от пара к стенке - 10 000 Вт/м2׺С;

коэффициент теплоотдачи от наружной поверхности изоляции к окружающему воздуху - 20 Вт/м2׺С;

теплопроводность стенки стальной трубы - 58 Вт/м׺С.

в качестве изоляционного материала выбираем минеральную вату с коэффициентом теплопроводности - 0,08 Вт/м2׺С

температура пара - 280 ºС;

средняя температура наружного воздуха зимнего периода - -8 ºС

температура поверхности изоляции - 30 0 ºС.

Определяем необходимую толщину тепловой изоляции.

По формулам (19)-(23) определяем термическое сопротивление изолированного трубопровода:

м׺С/Вт;

, м׺С/Вт;

, м׺С/Вт;

Суммарное термическое сопротивление трубопровода:

;

; (25)

Для нахождения диаметра тепловой изоляции решаем совместно уравнения (18) и (24):

;

м. Тогда толщина изоляции 77 мм.

Для эффективной работы тепловой изоляции необходимо, чтобы соблюдалось условие:

(26)

(27)

м.

Условие (26) соблюдается.

Тогда термическое сопротивление паропровода согласно формуле (25) будет равно:

м׺С/Вт.

Определяем падение температуры пара по длине наружного участка.

Коэффициент местных потерь теплоты

.

Расход пара

кг/сек.

Длина паропровода

м.

Теплоемкость пара

кДж/кг׺С.

Температура в конце участка будет равна:

(28)

ºС.

Падение температуры незначительное

ºС.

2.5.2 Тепловой расчет внутреннего участка паропровода

Принимаем следующие исходные данные:

внутренний диаметр трубы - 351 мм;

наружный диаметр трубы - 377 мм;

коэффициент теплоотдачи от пара к стенке - 10000 Вт/м2׺С;

коэффициент теплоотдачи от наружной поверхности изоляции к окружающему воздуху - 20 Вт/м2׺С;

теплопроводность стенки стальной трубы - 58 Вт/м׺С.

в качестве изоляционного материала выбираем минеральную вату с коэффициентом теплопроводности - 0,08 Вт/м2׺С

температура пара - 280 ºС;

средняя температура воздуха в помещении котельной - 30 ºС;

температура поверхности изоляции - 45 ºС.

Определяем необходимую толщину тепловой изоляции.

По формулам (19)-(23) определяем термическое сопротивление изолированного трубопровода:

м×ºС /Вт;

м×ºС /Вт;

м×ºС /Вт;

Суммарное термическое сопротивление трубопровода:

;

.

Для нахождения диаметра тепловой изоляции решаем совместно уравнения (18) и (24):

;

м. Тогда толщина изоляции 153 мм.

Термическое сопротивление паропровода согласно формуле (25) будет равно:

м׺С/Вт.

Определяем падение температуры пара по длине внутреннего участка.

Коэффициент местных потерь теплоты

.

Расход пара

кг/сек.

Длина паропровода

м.

Теплоемкость пара

кДж/кг׺С.

Температура в конце участка будет равна:

ºС.

Падение температуры незначительное

ºС.

Таким образом, гарантируется температура перегретого пара у потребителя - 279 ºС.

2.6 Расчет схемы электроснабжения

Электроснабжение оборудования котельной УСТК на сегодняшний день осуществляется от подстанции №20 «Т». При вводе в эксплуатацию электрогенераторов турбин, а также трансформаторов устанавливаемых на участке, питание электроприемников котельной УСТК, относящихся ко II-ой категории надежности электроснабжения, будет осуществляться независимо от комбинатовской системы электроснабжения, которая в настоящий момент осуществляется от ТЭЦ и ГПП-2. Кроме того, после внедрения мероприятий, предлагаемых в дипломном проекте, ввод от подстанции №20 «Т» выведется в резерв, что увеличит надежность электроснабжения участка.

2.6.1 Выбор и обоснование схемы электроснабжения участка котельной УСТК

Схемы электрических сетей должны обеспечивать надежное питание потребителей электроэнергии, быть удобными в эксплуатации. Поэтому, для решения электроснабжения участка котельной УСТК с вводом двух генераторов предлагается радиальная схема, характеризующаяся тем, что от источника питания (трансформаторной подстанции) отходят линии, питающие групповые распределительные пункты, от которых в свою очередь, отходят самостоятельные линии, питающие прочие электроприемники малой мощности. Данная схема, несмотря на высокую стоимость, обладает существенными достоинствами: простота в эксплуатации, высокая надежность (так, выход из строя одного из питающих кабелей, повлечет остановку лишь 1-го из котлов участка, которых на участке 4, что было бы невозможно при использовании ШМА или ШРА).

2.6.2 Расчет электрических нагрузок котельной УСТК

Расчет электрических нагрузок ведем методом упорядоченных диаграмм, с применением коэффициента расчетной нагрузки. Результаты расчет сведены в таблицу 23.

Порядок заполнения таблицы:

1. В первую графу записываем наименование групп электроприемников;

2. Во вторую графу записываем количество электроприемников и узлов питания;

3. В третью графу заносим минимальную и максимальную мощность электроприемников для групп и узлов питания. Паспортную мощность оборудования с повторно-кратковременным режимом работы, приводим к длительному режиму работы ПВ-100%:

- для кранов

;

- для сварочных трансформаторов

;

4. В четвертую графу заносим суммарную номинальную мощность электроприемника для групп и узла питания;

5. В пятую графу для узла питания заносим значение модуля сборки m, рассчитываемого по формуле: