Смекни!
smekni.com

Реконструкция сталеплавильного производства ОХМК с целью производства трубных марок сталей повышенной прочности (стр. 9 из 17)

± 5 мВ). Кроме того периодически замерят значение э.д.с. при помощи цифрового вольтметра Щ-68003 с точностью ± 0,1 мВ.

По величине э.д.с. электрохимической цепи рассчитывают равновесное парциальное давление кислорода исследуемого шлакового расплава (РО2 в пузырьке газа, мысленно помещённого в объём расплава и приведённого с ним в равновесие) по формуле Шмальцрида.

Основной методической трудностью при использовании твёрдоэлектрических датчиков для измерения окисленности шлаковых расплавов является, как уже отмечалось, взаимодействие материала электролита с жидким шлаком и неконтролируемое вследствии этого изменение доли ионной проводимости твёрдого электролита, а также создание диффузионного потенциала на границе оксид-оксид. Для устранения этих эффектов колпачки из ZrO2 покрывали слоем металлического молибдена толщиной 20 – 30 мкм. путём высокотемпературного вжигания.

Результаты проведённых опытов показали, что датчики с таким покрытием и без него в изучаемых оксидных расплавах дают практически одинаковые показания в пределах ошибки эксперимента (< 10% отн.). Заметные расхождения в измеряемых значениях э.д.с. наблюдали только при достижении очень низкого уровня окисленности шлака

О2 < 10-12 Па) /26/.


Использование кислородных датчиков позволяет контролировать окисленность стали, управлять процессом раскисления, экономить раскислители, давать информацию о глубине рафинирования стали от неметаллических включений и при необходимости, например при выплавке высокочистой стали, применять дополнительные способы снижения количества неметаллических включений путём флотации и фильтрации.

3. Спецчасть

3.1 Физико-химический расчёт рафинирования металла нетрадиционными шлаковыми смесями от серы и азота

3.1.1 Цель работы

Рассчитать сульфидную и нитридную ёмкости нетрадиционных шлаковых смесей, в состав которых входит TiO2. Оптимальный состав и расход шлаковой смеси, необходимый для оптимального (с технологической и экономической точки зрения) рафинирования металла от серы и азота.

3.1.2 Теоретические основы

Существуют различные способы борьбы с серой, а вот с азотом возникают проблемы.

Так американские исследования фирмы «ФРУЭХЕН» показали, что даже в вакууме удалить больше (10 – 15)% азота не удаётся. И лишь если концентрация серы в металле < 0,003% можно удалить больше азота.

Разработки последних лет российских, японских и американских учёных показали, что обработка металла шлаковыми смесями, с высокой нитридной ёмкостью и низкой окисленностью, позволяет удалить до 40% азота из низколегированных марок стали.

Так в США используют шлаковые смеси с высоким содержанием TiO2 и BaO (до 45% – 50% каждого). В следствии этого эти смеси имеют высокую стоимость, а также при высоком содержании TiO2 титан восстанавливается и переходит в металл.

В проекте выбраны и рассчитаны шлаковые смеси с низким содержанием TiO2 (от 10% до 30%)

Основными уравнениями данного расчёта являются уравнения коэффициентов распределения серы и азота:


lgLS = lgCS + lgPO2-1/2 + DG/(2,3×R×T) + lgfS, (1)

где (С) – концентрация серы в шлаке, %;

[S] – концентрация серы в металле, %;

LS – коэффициент распределения серы;

СS – сульфидная ёмкость шлака;

PO2 – парциальное давление кислорода, атм.;

fS – коэффициент активности серы;

Т – температура металла, К.

DG = – 72000 – 9,92×T (2)

lgLN = lgCN –3/4×lgPO2 +lgfN + 850/T + 0,905, (3)

где СN – нитридная ёмкость шлака;

LN – – коэффициент распределения азота.

Сульфидная ёмкость шлака определяется через оптическую основность шлаковой смеси./27/:

LgCS =

, (4)

где l – оптическая основность смеси.

Нитридная ёмкость шлака определяется через оптическую основность смеси /28/:

LgCN = 9,087 – 27,67l (5)

Величина оптической основности смеси определяется по следующей формуле:


, (6)

где li – оптическая основность компонента;

Ni – эквивалентные катионные доли компонентов.

Эквивалентные катионные доли находим по уравнению:

, (7)

где Vi – заряд аниона в компоненте;

ni – число анионов в компоненте;

xi – мольная доля компонента.

Мольная доля компонента находится:

, (8)

где (%)i – содержание компонента в смеси, %;

Мi – молярная масса i-го компонента.

Основными реакциями для расчёта парциального давления кислорода является:

2 [Al] + 3 [O] = (Al2O3) lgK1 =

1/2O2(г) = [O] DG2 = – 117000 – 2,89×T

, (9)

где К1 – константа равновесия первой реакции;

[Al] – концентрация алюминия в металле, %;

a(Al2O3) – активность Al2O3 в шлаке;

К2 – константа равновесия второй реакции.

LgK2 = – DG2/(2,3×R×T) (10)

Коэффициенты активности серы и азота находят из выражения:

lgfi

, (11)

где еij – параметр взаимодействия;

[j] – концентрация j-го элемента в металле, %.

Зная коэффициенты распределения серы и азота, мы можем найти степень рафинирования металла от этих примесей по выражению:

, (12)

где Ri – степень рафинирования от i-го элемента, %;

mшл – масса шлаковой смеси, кг/т металла;

mМе – масса металла, кг.

3.1.3 Постановка задачи

Рассчитать степень рафинирования металла от серы и азота нетрадиционными шлаковыми смесями, в составе которых есть TiO2

3.1.4 Описание алгоритма

1. Для расчёта необходимо ввести химический состав металла, который будем рафинировать; состав шлаковой смеси, температуру металла.

2. Определим мольные доли компонентов по формуле (8).

3. Рассчитаем эквивалентные катионные доли по уравнению (7).

4. Вычисляем оптическую основность смеси по формуле (6).

5. Рассчитываем сульфидную и нитридную ёмкости шлаковой смеси по формулам (4) и (5) соответственно.

6. Определяем по формулам (10) и (9) парциальное давление кислорода.

7. По выражению (11) находим коэффициенты активности серы и азота.

8. Подставляя найденные значения в уравнение (3) определяем коэффициент распределения азота.

9. Подставляя (2) в (1) и используя результаты предыдущих расчётов по уравнению (1) находим коэффициент распределения серы.

10. Задаваясь расходом шлаковой смеси на 1 т. металла, по выражению (12) находим степень рафинирования металла от серы и азота.

11. Зная цены отдельных компонентов (табл. 8), рассчитываем стоимость 1 т. заданной шлаковой смеси по формуле:

Ц = åЦi×Сi, (13)

где Ц – цена шлаковой смеси, $/т.;

Цi – цена отдельных компонентов смеси, $/т.;

Сi – доля компонента в смеси.

Таблица 8. Стоимость основных компонентов

Компонент CaO SiO2 TiO2 Боксит
Цена, $/т. 23 10 85 160

12. Зная расход шлаковой смеси на 1 т. металла рассчитаем, сколько она внесёт в себестоимость 1 т. металла:

Цуд = mшл×Ц, (14)

где Цуд – цена шлаковой смеси на 1 т. стали, $/т.;

mшл – расход шлаковой смеси на 1 т. стали, т./т.

13. В одной системе координат строим графики зависимостей:

а). RS = f (mшл, (%)TiO2);

б). RN = f (mшл, (%)TiO2).

По данной математической модели была написана компьютерная программа «DIPL.PAS», позволяющая произвести расчёты оптимального состава нетрадиционной шлаковой смеси, для совместного рафинирования от серы и азота, а также выбрать оптимальный с технологической точки зрения расход этой шлаковой смеси. Результаты расчётов в ПРИЛОЖЕНИИ 1.

В табл. 9 и табл. 10, а также на рис. 1 представлены общие результаты проведённых расчётов по десульфурации и деазотации металла на агрегате «ковш-печь».

Таблица 9. Степень десульфурации

(TiO2), % &bsol; mШЛ, кг/т 7,5 10 12,5 15
10 90,311 95,550 97,956 99,061
15 83,61 91,031 95,091 97,314
20 75,42 84,603 90,355 93,958
25 66,391 76,633 83,754 88,704
30 57,194 67,739 75,687 81,676

Таблица 10. Степень деазотации

(TiO2), % &bsol; mШЛ, кг/т. 7,5 10 12,5 15
10 7,25188 9,55037 11,79189 13,97787
15 11,55668 15,10411 18,50924 21,77780
20 18,10869 23,38442 28,32027 32,93814
25 27,68124 35,08655 41,73358 47,69996
30 40,80323 50,29531 58,26536 64,95742

Из рис. 1 видно, что оптимальным составом шлака является шлаковая смесь с содержанием TiO2 20% и расходом (12,5 – 15) кг/т

Полученные результаты позволяют сделать вывод о целесообразности разработки данной технологии обработки металла нетрадиционными шлаковыми смесями.