Рис.3. Структурные элементы механизма
а) группа Ассура 2 – го класса, 2 – го вида (рис.3,а);
б) группа Ассура 2 – го класса, 1 – го вида (рис.3,б);
в) механизм 1 – го класса (рис.3,в).
Таким образом, формула строения механизма имеет вид:
I(1)→II1(2,3)→II2(4,5).
Поскольку наивысший класс груп Ассура, входящих в состав механизма – второй, то и механизм в целом относится ко второму классу.
Для расчёта механизма на ЭВМ подготовлена таблица исходных данных (табл.1.3.).
По результатам расчётов на ЭВМ получена распечатка (см. следующую
страницу), расшифровка обозначений которой и сравнение с результатами «ручного счёта» приведено ниже (п.1.8.). Строка «Положение центров масс» таблицы «Параметры звеньев» распечатки необходимы для дальнейших расчётов и построений: – расшифровывается следующим образом (точки Si – центры масс звеньев):
LS1 = LO1S1 = 0; LS2 = LAS2 = 0,243 м; LS3 = LO3S3 = 0 м; LS4 = LCS4 = 0,083 м.
Чертёжные размеры, определяющие положения ценры масс:
AS2 = 48,6 мм; CS4 = 16,6 мм.
Таблица 1.3
Исходные данные для расчёта механизма на ЭВМ
Обозначения в программе | Обозначения в механизме | Численные значения (ввод) |
NG1 | II1(2,3) | 1 |
NG2 | II2(4,5) | 2 |
PS1 | Параметр сборки II1(2,3) | 1 |
PS2 | Параметр сборки II2(4,5) | – 1 |
L1 | LO1A | 0,10 |
L2 | LAB | 0,73 |
L3 | LO3B | 0,40 |
L4 | LCD | 0,25 |
L03 | LO3C | 0,50 |
X03 | X | 0,63 |
Y03 | – Y1 | 0 |
X05 | 0 | 0 |
Y05 | – Y2 | – 0,50 |
D1N | 217 | |
D03 | ÐBO3C | 180 |
D5 | 0 | 0 |
N1 | – n1 | – 380 |
G5 | 60 | |
Q1…Q12 | 1,1Qmax | 2640 |
Поскольку одним из свойств групп Ассура является их кинематическая определимость, то кинематический анализ проводится последовательно по группам Ассура, причём порядок их рассмотрения совпадает с направлением стрелок в формуле строения (1.3.).
Механизм I класса (звено 1): – Угловая скорость кривошипа:
.
Вектор скорости точки А перпендикулярен звену 1 и направлен в соответствии с направлением ω1. Модуль скорости
VA = ω1· LO1A = 39,8 ∙ 0,1 = 3,98 м/c.
На плане скоростей этот вектор изображается отрезком ра = 99,5 мм.
Тогда масштаб плана скоростей
Группа АссураII1(2,3).
Внешними точками группы являются точки А и О3, внутренней – точка В. Составляется система векторных уравнений, связывающих скорость внутренней точки со скоростями внешних точек:
По этой системе строится план скоростей и определяются модули скоростей:
VB = (pb) · kV = 45 · 0,04 = 1,80 м/c;
VBA = (ab) ∙ kV = 102 ∙ 0,04 = 4,08 м/c.
Скорости точек S2 и С находятся с помощью теоремы подобия. Составляется пропорция, связывающая чертёжные размеры звена 2 (АВ, АS2) с отрезками плана скоростей:
откуда определяется длина неизвестного отрезка.
Этот отрезок откладывается на отрезке ab плана скоростей. Точка S2 является концом вектора
, начало всех векторов в полюсе р. Поэтому отрезок ps2 = 70,5 мм (определено замером) изображает вектор .Модуль вектора
VS2 = (ps2) ∙ kV = 70,5 ∙ 0,04 = 2,82 м/c.
Скорость точки С определяется аналогично по принадлежности звену 3.
Определяются величины угловых скоростей звеньев 2 и 3:
Для определения направления ω2 отрезок ab плана скоростей устанавливается в точку В, а точка А закрепляется неподвижно; тогда становится очевидным, что ω2 направлена по часовой стрелке. Для определения направления ω3 отрезок pb плана скоростей устанавливается в точку В, а точка О3 закрепляется неподвижно; тогда становится очевидным, что ω3 также направлена по часовой стрелке.
Группа Ассура II2(4,5).
Внешними точками группы являются точки С и D0 (точка D0 принадлежит стойке), внутренней – точка D, принадлежащая звеньям 4 и 5 (в дальнейшем обозначается без индексов).
Рис.4. Определение направлений угловых скоростей
По принадлежности точки D звену 5 вектор её скорости известен по направлению:
Поэтому для построения плана скоростей для данной группы Ассура достаточно одного векторного уравнения:
В результате построения плана скоростей определяются:
VD = (pd) ∙ kV = 55 ∙ 0,04 = 2,20 м/c;
VDC = (cd) kV = 16,5 ∙ 0,04 = 0,66 м/c.
Скорость точки S4 определяется по принадлежности звену 4 аналогично определению скорости точки S2 по теореме подобия…
Звено 5 совершает поступательное движение, поэтому скорости всех точек звена одинаковы и равны скорости точки D.
Величина угловой скорости звена 4 определяется аналогично предыдущему:
Для определения направления ω4отрезок cd плана скоростей устанавливается в точку D, а точка С закрепляется неподвижно; тогда становится очевидным, что ω4 направлена по часовой стрелке.
Механизм I класса (звено 1).
Точка А кривошипа 1 совершает вращательное движение вокруг О1, поэтому её ускорение есть сумма нормального и тангенциального ускорения:
Поскольку принято n1 = const (следовательно ε1 = 0), то
Модуль ускорения
На плане скоростей этот вектор изображается отрезком πа = 158 мм,
направленным от А к О1. Тогда масштаб плана ускорений
Группа Ассура II1(2,3).
Внешними точками группы являются точки А и О3, внутренней – точка В. Составляется система векторных уравнений, связывающих ускорение внутренней точки с ускорениями внешних точек:
В этой системе модули нормальных ускорений
На плане ускорений векторы
и изображаются отрезками