Смекни!
smekni.com

Розрахунок приводу подачі (стр. 3 из 4)

– максимальна напруга в закритому стані:

– струм, що ударно не повторюється у відкритому стані:

3.3 Обмеження струму через тиристори при короткому замиканні на стороні постійного струму

При короткому замиканні на стороні постійного струму реактор, що токообмежує, повинен обмежити швидкість наростання аварійного струму, щоб він не перевищив небезпечного для тиристорів значення на протязі власного часу спрацьовування захисних пристроїв. Обмеження струму через вентилі може бути отримане за рахунок індуктивності розсіювання обмоток трансформатора й індуктивності в ланцюзі постійного струму.

Початковий струм у момент короткого замикання, при максимальному навантаженні:

Максимально допустимий протягом півперіоду струм вентиля:

Необхідна величина спільної індуктивності для нульової схеми:


Індуктивність додаткового реактора:

Обираємо

Оскільки індуктивність реактора має від’ємне значення, то індуктивностей електропривода та струмообмежуючих реакторів достатньо для обмеження швидкості наростання аварійного струму. Тому додатковий реактор не потрібен.

3.4 Згладжування пульсацій випрямленого струму

Пульсації спрямованої напруги призводять до пульсацій спрямованого струму, які погіршують комутацію двигуна і збільшують його нагрів. У симетричних мостових і в нульових схемах найбільшу амплітуду мають основні гармоніки (k=1).

Амплітуди гармонік більш високої кратності (k = 2, 3) значно менше, а дія реакторів на них більш ефективна, тому розрахунки індуктивності дроселя для цих схем ведуться тільки по основній гармоніці, тобто при k = 1.

- кратність основної гармоніки.

р1 – припустиме діюче значення основної гармоніки струму. р1 повинно бути в межах від 2% до 15% номінального струму в залежності від потужності, діапазону регулювання і величини іскріння під щітками.

Приймаємо

- кут регулювання перетворювача.

Число пульсацій за період залежить від числа фаз т вторинної обмотки трансформатора і схеми з'єднання вентилів:

Амплітудні значення гармонійних складових спрямованої напруги Enmax пов'язані з її середнім значенням Е0п і кутом регулювання перетворювача виразом:

При відомій амплітуді основної гармоніки Enmax і припустимому діючому значенні основної гармоніки струму р1 необхідна величина індуктивності ланцюга випрямленого струму може бути визначена:

Індуктивність додаткового реактора, для згладжування пульсацій:

Еквівалентна індуктивність якірного кола двигуна:

4. Розрахунок параметрів об'єкта керування для аналізу динамічних властивостей системи

Еквівалентний опір якірного кола двигуна:

Електромагнітна стала часу якірного ланцюга двигуна:

Температурний коефіцієнт:

Постійна двигуна та номінальна частота обертання:

Електромеханічна стала часу якірного ланцюга двигуна:


Напруга керування на вході ТП, що відповідає максимальній ЕРС на виході Е0n:

Коефіцієнт передачі тиристорного перетворювача:

Стала часу тиристорного перетворювача:

5. Розрахунок параметрів регулятора і елементів контуру регулювання струму якоря у системі підпорядкованого регулювання

Система підпорядкованого регулювання являє собою багатоконтурну систему з каскадним включенням регуляторів. При цьому число регуляторів і контурів регулювання дорівнює числу регульованих параметрів. У двоконтурній схемі (рис. 2) вихідний сигнал регулятора швидкості, включений у зовнішній контур, є заданим для регулятора струму, включеного у внутрішній контур. Налагодження регуляторів відбувається незалежно і послідовно від внутрішнього контуру до зовнішнього.

Контур струму складається з об'єкта регулювання – ланцюга якоря двигуна, силового перетворювача і регулятора струму. Контур замикається зворотнім зв'язком по величині напруги, що знімається з датчика струму в ланцюзі якоря.

Рис. 2 Двоконтурна система підпорядкованого регулювання

Напруга зворотного зв'язку за струмом:

Максимально припустимий струм двигуна при перехідних процесах для високомоментного двигуна прийняти:


що відповідає режиму роботи в номінальних обертах. При зменшенні обертів нижче ωн величина Imax буде коректуватися вузлом залежного струмообмеження ВЗСО (у бік збільшення).

Передатний коефіцієнт зворотного зв'язку по струму:

5.1 Налагодження регулятора струму:

Так як об'єкт регулювання в контурі струму поданий аперіодичними ланками, застосовується ПІ-регулятор струму, який настроюється по модульному (технічному) оптимумі. При стандартному налагодженні контуру струму звичайно зневажають внутрішнім зворотним зв'язком по ЕРС, що справедливо, якщо електромагнітна (Те) і електромеханічна (Тм) постійні двигуна значно перевершують постійну часу (Тn), и Тм >> Те. У випадку невиконання умов характер перехідного процесу значно відрізняється від оптимального.

Тобто для відповідності перехідного процесу в контурі регулювання струму перехідному процесу в контурі оптимальній структурі, необхідний ПІ-регулятор струму з коефіцієнтом передачі Крс і постійною часу Трс:


де

с – некомпенсована мала стала часу.

Настроювання на технічний оптимум характеризуються невеликим перерегулюванням 4,3%. Тривалість перехідного процесу визначається тільки малою некомпенсованою постійною часу і складає 4,7Тμ.

Для одержання перехідного процесу в контурі струму, що відповідає налагодженню на модульний оптимум, визначимо передатну функцію регулятора струму:

5.2 Розрахунок параметрів регулятора струму:

В якості датчика струму використовуємо шунт.

Вибираємо номінальний струм шунта Iш з ряду 10, 20, 40, 100, 200А по номінальному струму привода: IшIп.

Обираємо

При протіканні через шунт номінального струму шунта Iш с шунта знімається напруга 75 мВ, тому:

- коефіцієнт передачі шунта:


коефіцієнт передачі датчика струму якоря:

Для розрахунку параметрів регулятора (рис. 3) задаємось величиною ємності Cзз:

Постійна часу зворотного зв'язку регулятора:

визначаємо Rзз:

Інші параметри: