Смекни!
smekni.com

Соединения деталей и узлов машин (стр. 6 из 9)

11 Штифтовые соединения

Штифтовые соединения применяют при небольших нагрузках преимущественно в приборостроении. Соединяемые детали сопрягаются при этом по переходным посадкам.

Рисунок 14 – Штифтовые соединения

Для исключения выпадения в процессе работы используют штифты: с насеченными канавками, вальцованные, резьбовые. Часто для этих же целей произ­водят разведение концов штифтов.

Рисунок 15 – Штифты (а – гладкие, б – с канавками, в – с резьбовым концом, г – разводной конический)

Основные типы штифтов стандартизо­ваны. Их изготовляют из углеродистых сталей 30, 45, 50 и др.

По характеру работы штифтовое соеди­нение подобно заклепочному (работает на срез и смятие). Для расчета соединения используют те же зависимости. Условие прочности при срезе радиального штифта,

а условие прочности по смятию

где Ft- срезающая сила (осевая или окружная); i - число поверхностей среза; Ас=πd2/ 4 - площадь штифта при срезе; Асм=d(D-d1) - площадь поверхности смятия (сжатия); [τc]=70?80 МПа­ - допускаемое напряжение при срезе; [σсм] =200?300 МПа - допускаемое напряжение при смятии.

Срезающая сила при передаче вра­щающего момента Ft=2T/d1.

Штифты диаметром d=(0,1?0,15)dв и длиной l=(3?4)dв (dв - диаметр вала) устанавливают по посадке с натягом Н7/r6 в отверстия, совместно просверленные и развернутые при сборке в валу и ступице по стыку посадочных поверхностей.

Рисунок 16 – Схемы к расчёту соединений радиальным (а) и осевым (б) штифтами

Многоштифтовые соединения этого типа по прочности близки к шлицевым.


12. Шпоночные соединения

Соединения двух со­осных цилиндрических деталей для передачи вращения между ними осуществляется с помощью шпонки 1 (в соответстивии с рисунком 17, а), специальной детали, за­кладываемой в пазы соединяемых вала 2 и ступицы 3.

Рисунок 17 – Шпоночные соединения

В машиностроении применяют не­напряженные (без нагрузки) соеди­нения (с помощью призматических и сег­ментных шпонок (в соответстивии с рисунком 17, б и в), и напряженные соединения (с помощью клиновых шпонок (в соответстивии с рисунком 17, г)). Шпонки этих типов стандартизованы, их размеры выбирают по ГОСТ 23360-78, ГОСТ 24071-80 и ГОСТ 24068-80.

Основные достоинства соединений со­стоят в простоте конструкции и возмож­ности жесткой фиксации насаживаемой детали в окружном направлении.

Однако соединения трудоемки в изго­товлении, требуют ручной пригонки или подбора. Это ограничивает использование соединений в машинах крупносерийного и массового производства. Не рекомендуется применение соединений для быстровра­щающихся валов ответственного назначе­ния из-за сложности обеспечения концент­ричной посадки сопрягаемых деталей.

Шпоночные соединения применяют преимущественно в тех случаях, когда посадку с натягом не удается реализовать по условиям прочности или технологическим возможностям.

Соединения призматическими шпонка­ми. Применяются в конструкциях наиболее широко, так как просты в изготовлении и имеют сравнительно небольшую глубину врезания в вал.

Шпонки имеют прямоугольное сечение с отношением высоты к ширине от 1 (для валов диаметром до 22 мм) до 0,5 (для валов больших диа­метров). Их устанавливают с натягом в пазы валов. Рабочими у шпонок являют­ся боковые узкие грани. В радиальном направлении предусмотрен зазор, В ответ­ственных соединениях сопряжение дна па­за с боковыми сторонами выполняют по радиусу для снижения концентрации напряжений. Материал шпонок - чистотянутая сталь 45 или сталь Ст6 с пределом прочности σв =590?750 МПа.

Если принять для упрощения, что напря­жения в зоне контакта распределены рав­номерно, и плечо рав­нодействующей этих напряжений равно 0,5d (где d - диаметр вала), то средние контактные напряжения (напряжения смя­тия, вызывающие смятие рабочих граней)

где Т - вращающий момент; lр - рабочая длина шпонки; t2=0,4h - ­глубина врезания шпонки в ступицу;

- допускаемое напряжение на смя­тие.

На практике сечение шпонки подбирают по ГОСТ 23360-78 в зависимости от диа­метра вала, а длину l шпонки назначают на 5-10 мм меньше длины ступицы. Затем по формуле (1) оценивают прочность соединения на смятие или вычисляют пре­дельный момент, соответствующий напря­жению

.

Рабочая длина шпонки lp=l-b может быть определена из очевидного соотношения.

.

Проверку прочности шпонок на срез обычно не производят, так как это условие удовлетворяется при использовании стан­дартных сечений шпонок и рекомендуемых значений

.

Если условие прочности не выпол­няется, то соединение образуют с помощью двух шпонок, установленных под углом 120 или 180°.

Соединения характеризуются сущест­венно неравномерным распределением нагрузки и напряжений как по высоте сечения, так и по длине шпонки. Это вызывает упругопласти­ческое смятие рабочих граней пазов и шпонки, закручивание ее, особенно при на­личии зазора между валом и ступицей. Поэтому длину шпоночных соединений ог­раничивают (l≤1,5d), а посадку зубча­тых колес, шкивов, полумуфт и других деталей на валы осуществляют с натягом (посадки Н7/р6; Н7/r6; H7/s7; H7/k6 и т. п.).

В этом случае шпоночные соединения по существу выключаются из работы и оказы­ваются резервными, а шпонки обеспечи­вают лишь жесткую фиксацию в окружном направлении насаживаемых деталей.

Соединения сегментными шпонками. Сегментные шпонки имеют более глубокую посадку и не пере­кашиваются под нагрузкой, они не требуют ручной пригонки. Однако глубокий паз су­щественно ослабляет вал, поэтому сег­ментные шпонки используют преимущест­венно для закрепления деталей на мало­нагруженных участках вала (например, на входных или выходных хвостовиках валов).

Расчет соединений с сегментными шпон­ками также производят по формуле, принимая t2=h-t1. До­пускаемые напряжения смятия

при постоянной нагрузке в соединении сталь­ного вала и шпонки из чистотянутой стали (σв=500?600 МПа) в зависимости от материала ступицы можно выбирать следующими: 150-180 МПа - для ступиц из стали; 80-100 МПа - из чугуна и алю­миния; 15-25 МПа - из текстолита и древопластика.

Большие значения принимают при лег­ком режиме работы (переменная нагрузка не больше 5% от постоянной), а мень­шие - при тяжелых условиях эксплуатации (нагрузка знакопеременная с ударами).


13. Резьба

Резьба - выступы, образованные на основной поверхности винтов или гаек и расположенные по винтовой линии. Резьбовое соединение образуется двумя (реже тремя) деталями. У одной из них на наружной, а у другой на внутренней поверхности имеются расположенные по винтовой поверхности выступы – соответственно наружная и внутренняя резьба (в соответстивии с рисунком 18).

По форме основной поверхности различают цилиндрические и конические резьбы. Наиболее распространена цилиндрическая резьба. Коническую резьбу применяют для плотных соединений труб, масленок, пробок и т. п.

Профиль резьбы — контур сечения резьбы в плоскости, проходящей через ось основной поверхности. По форме профиля различают треугольные, прямоугольные, тра­пецеидальные, круглые и другие резьбы.

По направлению винтовой линии различают правую и левую резьбы. У правой резьбы винтовая линия идет слева направо и вверх, у левой — справа налево и вверх. Наиболее рас­пространена правая резьба. Левую резьбу применяют только в специальных случаях.

Если витки резьбы расположены по двум или нескольким параллельным вин­товым линиям, то они образуют многозаходную резьбу. По числу захода раз­личают однозаходную, двухзаходную и т. д. резьбы. Наиболее распространена однозаходная резьба. Все крепежные ре­зьбы однозаходные. Многозаходные резь­бы применяются преимущественно в винтовых механизмах. Число заходов больше трех применяют редко.

Рисунок 18 – Резьбовое соединение с метрической резьбой

Методы изготовления резьбы

1. Нарезкой вручную мет­чиками или плашками. Способ малопроизводительный. Его применяют в индивидуальном производстве и при ремонтных работах.

2. Нарезкой на токарно-винторезных или специальных станках.

3. Фрезерованием на специальных резьбофрезерных станках. Применяют для нарезки винтов больших диаметров с повышенными требованиями к точности резьбы (ходовые и грузовые винты, резьбы на валах и т.д.).

4. Накаткой на специальных резьбонакатных станках-автоматах. Этим высокопроизводительным и дешёвым способом изготовляют большинство резьб стандартных крепёжных деталей (болты, винты и т.д.). Накатка существенно упрочняет резьбовые детали.