Смекни!
smekni.com

Сопротивление материалов (стр. 2 из 12)

График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций.

Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб.

В центрах масс исследуемых сечений С' или С" зададимся соответственно левой (с', х', у', z') или правой (с", х", у", z") системами координатных осей (рис.1 в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 ≤ х'1 ≤ а, а ≤ x'2 ≤ b и т.д., где 0, а и b - линейные размеры границ исследуемых участков бруса.

Зададимся положительными направлениями проекций главного вектора

или
и главного момента
или
на координатные оси следящей системы (рис.1 б, в):

{N', Q'y, Q'z},
{M'x, M'y, M'z} (6)

{N", Q"y, Q"z},
{M"x, M"y, M"z}

При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы - вдоль положительного направления оси, для момента - против часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом:

Nx - нормальная сила, признак центрального растяжения или сжатия;

Мx - внутренний крутящий момент, возникает при кручении;

Qz, Qу - поперечные или перерезывающие силы - признак сдвиговых деформаций,

Му, Мz - внутренние изгибающие моменты, соответствуют изгибу.

Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде:

{P1, P2, P3, ... , N', N", Q'y, Q"y, Q'z, Q"z, M'x, M"x,

M'y, M"y, M'z, M"z, ... , Pn-1, Pn} ~ 0 (7)

С учетом эквивалентности нулю исходной системы сил (1) имеет место:

{N', N", Q'y, Q"y, Q'z, Q"z, М'x, M"x, M'y, M"y, М'z, M"z}~0 (8)

Как естественное следствие из соотношений 3,4,5 полученное условие является необходимым для того, чтобы одноименные компоненты внутренних усилий попарно образовали подсистемы сил эквивалентные нулю:

{N', N"} ~ 0 > N' = -N"

{Q'y, Q"y} ~ 0 > Q'y = -Q"y

{Q'z, Q"z} ~ 0 > Q'z = -Q"z

{М'x, M"x} ~ 0 > М'x = -M"x

{M'y, M"y} ~ 0 > M'y = -M"y

{М'z, M"z} ~ 0 > М'z = -M"z (9)

Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой. Эти перемещения могут наблюдаться при разрушении тела по этому сечению.

Искомые усилия определяются из соответствующих уравнений для любой из отсеченных частей в следящей системе координатных осей. Так, для любой отсеченной части соответствующие уравнения равновесия приобретают вид;

ix = N + P1x + P2x + ... + Pkx = 0  N

iy = Qy + P1y + P2y + … + Pky = 0  Qy

iz = Q + P1z + P2z + ... + Pkz = 0  Qz

x(Pi) = Mx + Mx(Pi) + ... + Mx(Pk) = 0  Mx

y(Pi) = My + My(Pi) + ... + My(Pk) = 0  My

z(Pi) = Mz + Mz(Pi) + ... + Mz(Pk) = 0  Mz (10)

Здесь для простоты обозначений системы координат с' х' у' z' и с" х" у" т" заменены единой оxуz.

Уважаемые коллеги! Таким образом, механизм предложенного автором лекций метода построения эпюр внутренних усилий, освобождающий Вас от механического запоминания "правил знаков" при построении эпюр внутренних усилий, заключается в следующем:

Определите реакции в связях по величине и направлению в базовой системе координат.

Определите количество участков бруса для использования метода сечений.

Мысленно рассеките брус в пределах исследуемого участка и изобразите на Ваше усмотрение левую или правую условно отсеченную часть.

Укажите пределы изменения положения сечения вдоль продольной оси в базовой системе координат на этом участке.

Введите в искомом сечении соответственно левую или правую следящую систему координатных осей.

Задайтесь положительными направлениями внутренних усилий в следящей системе координат.

Составьте уравнения равновесия для рассматриваемой условно отсеченной части бруса в следящей системе координат.

Определите из уравнений равновесия искомые внутренние усилия.

Вычислите искомые внутренние усилия на границах участков и при необходимости, - их экстремальные значения.

Выбрав масштаб усилий, выполните построение эпюры в соответствие с полученными их модульными значениями и знаками.

Указанная последовательность действий (кроме п.1) составляет суть метода сечений (разреза), единственного метода для определения внутренних усилий.

Не забываем, что при распределенной нагрузке в соответствие с теоремой Вариньона векторный момент равнодействующей рассматриваемой системы сил относительно любой точки равен сумме векторных моментов всех сил этой системы относительно той же точки.

Эпюры внутренних усилий позволяет визуально найти положение опасного сечения, где действуют наибольшие по модулю внутренние усилия. В этом сечении при прочих равных условиях наиболее вероятно разрушение конструкции при предельных нагрузках.

3. Эпюры внутренних усилий при растяжении-сжатии и кручении

Ключевые слова: Нормальное сечение. Нормальная сила. Внутренний крутящий момент.

Эпюры внутренних усилий при растяжении-сжатии

Растяжением или сжатием называется такой простой вид сопротивления, при котором внешние силы приложены вдоль продольной оси бруса, а в поперечном сечении его возникает только нормальная сила.

Рассмотрим расчетную схему бруса постоянного поперечного сечения с заданной внешней сосредоточенной нагрузкой Р и распределенной q, (рис.1).


Пусть

. Прежде всего определим опорную реакцию R, задавшись ее направлением вдоль оси х.

Брус имеет 2 участка

и
.

В пределах первого участка мысленно рассечем брус на 2 части нормальным сечением и рассмотрим равновесие, допустим левой части, введя следующую координату х1, рис.1 б:

Следовательно, в пределах первого участка брус претерпевает сжатие постоянной нормальной силой.

Аналогично поступим со вторым участком. Мысленно рассечем его сечением 2-2, и рассмотрим равновесие левой части (рис.1 в).Установим предварительно границы изменения х2:

Подставляя граничные значения параметра х2, получим:

Таким образом, в пределах второго участка брус растянут и нормальная сила изменяется по линейному закону.

Аналогичный результат получается и при рассмотрении правой отсеченной части (рис.1 г):

На основе полученных данных строится эпюра нормальных сил в виде графика распределения нормальной силы по длине бруса (рис.1 д). Характерно, что скачки на эпюре обусловлены наличием в соответствующих сечениях сосредоточенных сил R и Р.