Смекни!
smekni.com

Сопротивление материалов (стр. 5 из 12)

dFx=dFnx, dFy=dFny, dFz=dFnz (1)

вытекающими из того, что грани, ортогональные координатным осям, есть проекции наклонной площадки на соответствующую координатную плоскость.

Проектируя силы, действующие на гранях элементарного тетраэдра, на координатные оси, получим уравнения равновесия для рассматриваемого объема. Например, проекции всех поверхностных сил на ось Ох дают

С учетом соотношений (1) после сокращения на dF получим уравнение, связывающее проекцию рx вектора напряжений с соответствующими компонентами тензора напряжений. Объединяя это уравнение с двумя аналогичными уравнениями, полученными проектированием сил на оси Оy и Оz, приходим к следующим соотношениям

(2)

носящим название формул Коши. Эти формулы определяют вектор напряжений на произвольно выбранной площадке с вектором n через компоненты тензора напряжений.

Формулы (2) позволяют вычислить через компоненты тензора напряжений

полное напряжение

(3)

нормальное напряжение

(4)

и касательное напряжение:

Среди всех возможных направлений вектора нормали n существуют такие направления, для которых вектор напряжений pn параллелен вектору n. На соответствующих площадках действуют только нормальные напряжения, а касательные напряжения отсутствуют. Такие площадки называются главными, а нормальные напряжения на этих площадках называются главными напряжениями. Пусть площадка с единичным вектором нормали является главной. Условия коллинеарности векторов pn и n есть условия пропорциональности их компонент:

С учетом формул Коши получим систему линейных однородных уравнений относительно неизвестных компонент nx, ny, nz вектора нормали к главной площадке

Эта система уравнений имеет ненулевое решение, если определитель, составленный из коэффициентов уравнений, обращается в нуль:

Раскрывая определитель, приходим к кубическому уравнению относительно главного напряжения 

Здесь введены обозначения

Уравнение (3) называется характеристическим уравнением для тензора напряжений. Коэффициенты (4) этого уравнения называются инвариантами тензора напряжений. Решение кубического уравнения (3) имеет три вещественных корня s1, s2, s3, которые обычно упорядочиваются s1s2s3.

Каждому значению j (j=1, 2, 3) соответствует вектор nj, характеризующий положение j-й главной площадки, с компонентами nj1, nj2, nj3. Для нахождения этих компонент достаточно в уравнения подставить найденное значение j и решить любые два из этих уравнений совместно с условием нормировки

(5)

Главные напряжения обладают важным свойством: по сравнению со всеми другими площадками нормальные напряжения на главных площадках принимают экстремальные значения. Для доказательства этого свойства достаточно исследовать на экстремум нормальное напряжение как функцию nx, ny, nz при дополнительном ограничении (5). Можно показать, что три главные площадки, соответствующие главным напряжениям s1, s2, s3, взаимно перпендикулярны или, что то же самое, векторы nj и nk, соответствующие различным значениям j и k - ортогональны. Условие ортогональности имеет вид

Кубическое уравнение (3) можно переписать в виде

Приводя это уравнение к виду (3), получим следующие выражения для инвариантов (4) через главные напряжения:

Термин "инвариантность" обозначает независимость некоторой величины от выбора системы координат.

Введем среднее (гидростатическое) напряжение по формуле

Тензор напряжений можно представить в виде суммы двух тензоров

, где

Первый тензор называется шаровым, он характеризует изменение объема тела без изменения его формы. Второй тензор, называемый девиатором, характеризует изменение формы.

Особенностью девиатора напряжений является равенство нулю его первого инварианта:

Найдем положение площадок, на которых касательные напряжения принимают экстремальные значения. Для этого нужно отыскать экстремумы касательного напряжения при ограничении (5). Экстремальные касательные напряжения действуют на площадках, параллельных одной из главных осей и образующих с двумя другими осями угол /4. По величине эти напряжения равны

При этом на площадках с экспериментальными касательными напряжениями присутствуют нормальные напряжения, которые равны

Фигура, которую образуют площадки с экстремальными касательными напряжениями, изображена на рис. 2. Она принадлежит к классу параллелоэдров и представляет собой 12-гранник с гранями в виде ромбов, отношение диагоналей которых равно

.


Таким образом, общая теория напряженного состояния позволяет охватывать, в целом, весь комплекс видов сопротивлений, как простого, так и сложного характера.

7. Упругость и пластичность. Закон Гука

Ключевые слова: упругость, пластичность, разрушение, коэффициент Пуассона, модуль Юнга, модуль сдвига, энергия деформации.

Действие внешних сил на твердое тело приводит к возникновению в точках его объема напряжений и деформаций. При этом напряженное состояние в точке, связь между напряжениями на различных площадках, проходящих через эту точку, определяются уравнениями статики и не зависят от физических свойств материала. Деформированное состояние, связь между перемещениями и деформациями устанавливаются с привлечением геометрических или кинематических соображений и также не зависят от свойств материала. Для того чтобы установить связь между напряжениями и деформациями, необходимо учитывать реальные свойства материала и условия нагружения. Математические модели, описывающие соотношения между напряжениями и деформациями, разрабатываются на основе экспериментальных данных. Эти модели должны с достаточной степенью точности отражать реальные свойства материалов и условия нагружения.

Наиболее распространенными для конструкционных материалов являются модели упругости и пластичности. Упругость-это свойство тела изменять форму и размеры под действием внешних нагрузок и восстанавливать исходную конфигурацию при снятии нагрузок. Математически свойство упругости выражается в установлении взаимно однозначной функциональной зависимости между компонентами тензора напряжений и тензора деформаций. Свойство упругости отражает не только свойства материалов, но и условия нагружения. Для большинства конструкционных материалов свойство упругости проявляется при умеренных значениях внешних сил, приводящих к малым деформациям, и при малых скоростях нагружения, когда потери энергии за счет температурных эффектов пренебрежимо малы. Материал называется линейно-упругим, если компоненты тензора напряжений и тензора деформаций связаны линейными соотношениями.

При высоких уровнях нагружения, когда в теле возникают значительные деформации, материал частично теряет упругие свойства: при разгрузке его первоначальные размеры и форма полностью не восстанавливаются, а при полном снятии внешних нагрузок фиксируются остаточные деформации. В этом случае зависимость между напряжениями и деформациями перестает быть однозначной. Это свойство материала называется пластичностью. Накапливаемые в процессе пластического деформирования остаточные деформации называются пластическими.

Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части. Твердые тела, выполненные из различных материалов, разрушаются при разной величине деформации. Разрушение носит хрупкий характер при малых деформациях и происходит, как правило, без заметных пластических деформаций. Такое разрушение характерно для чугуна, легированных сталей, бетона, стекла, керамики и некоторых других конструкционных материалов. Для малоуглеродистых сталей, цветных металлов, пластмасс характерен пластический тип разрушения при наличии значительных остаточных деформаций. Однако подразделение материалов по характеру разрушения на хрупкие и пластичные весьма условно, оно обычно относится к некоторым стандартным условиям эксплуатации. Один и тот же материал может вести себя в зависимости от условий (температура, характер нагружены я, технология 'изготовления и др.) как хрупкий или как пластичный. Например, пластичные при нормальной температуре материалы разрушаются как хрупкие при низких температурах. Поэтому правильнее говорить не о хрупких и пластичных материалах, а о хрупком или пластическом состоянии материала.