Смекни!
smekni.com

Сопротивление материалов (стр. 6 из 12)

Пусть материал является линейно-упругим и изотропным. Рассмотрим элементарный объем, находящийся в условиях одноосного напряженного состояния (рис. 1), так что тензор напряжений имеет вид

При таком нагружении происходит увеличение размеров в направлении оси Ох, характеризуемое линейной деформацией

, которая пропорциональна величине напряжения

(1)

Это соотношение является математической записью закона Гука, устанавливающего пропорциональную зависимость между напряжением и соответствующей линейной деформацией при одноосном напряженном состоянии. Коэффициент пропорциональности Е называется модулем продольной упругости или модулем Юнга. Он имеет размерность напряжений.

Наряду с увеличением размеров в направлении действия напряжения x происходит уменьшение размеров в двух ортогональных направлениях (рис. 1). Соответствующие деформации обозначим через y(x) и z(x), причем эти деформации отрицательны при положительных x и пропорциональны z:

(2)

Коэффициент пропорциональности  называется коэффициентом Пуассона, который в силу изотропности материала одинаков для обоих ортогональных направлений.

Соотношения, аналогичные (1) и (2), в случае одноосного нагружения в направлении осей Оу, Оx напряжением y, z, соответственно имеют вид

(3)

(4)

При одновременном действии напряжений по трем ортогональным осям, когда отсутствуют касательные напряжения, для линейно-упругого материала справедлив принцип суперпозиции (наложения решений):

С учетом формул (1) - (4) получим

(5)

Касательные напряжения вызывают угловые деформации, причем при малых деформациях они не влияют на изменение линейных размеров, и следовательно, на линейные деформации. Поэтому они справедливы также в случае произвольного напряженного состояния и выражают так называемый обобщенный закон Гука.

Угловая деформация xy обусловлена касательным напряжением xy, а деформации xz и yz - соответственно напряжениями xz и yz. Между соответствующими касательными напряжениями и угловыми деформациями для линейно-упругого изотропного тела существуют пропорциональные зависимости

(6)

которые выражают закон Гука при сдвиге. Коэффициент пропорциональности G называется модулем сдвига. Существенно, что нормальное напряжение не влияет на угловые деформации, так как при этом изменяются только линейные размеры отрезков, а не углы между ними (рис.1).


Линейная зависимость существует также между средним напряжением, пропорциональным первому инварианту тензора напряжений, и объемной деформацией, совпадающей с первым инвариантом тензора деформаций:

(7)

Соответствующий коэффициент пропорциональности К называется объемным модулем упругости. В формулы (1) - (7) входят упругие характеристики материала Е, , G и К, определяющие его упругие свойства. Однако эти характеристики не являются независимыми. Для изотропного материала независимыми упругими характеристиками являются две, в качестве которых обычно выбираются модуль упругости Е и коэффициент Пуассона . Чтобы выразить модуль сдвига G через Е и , рассмотрим плоскую деформацию сдвига под действием касательных напряжений t (рис. 2). Для упрощения выкладок используем квадратный элемент со стороной а. Вычислим главные напряжения 1 = t, 3 = t. Эти напряжения действуют на площадках, расположенных под углом /4 к исходным площадкам. Из рис. 2 найдем связь между линейной деформацией 1 в направлении действия напряжения 1 и угловой деформацией . Большая диагональ ромба, характеризующая деформацию 1, равна

Для малых деформаций tg

,

С учетом этих соотношений

До деформации эта диагональ имела размер АВ=а

. Тогда будем иметь

Из обобщенного закона Гука (5) получим

Сравнение полученной формулы с записью закона Гука при сдвиге (6) дает

G=E/[2(1+)] (8)

Сложим три соотношения упругости (5)

(9)

В итоге получим

Сравнивая это выражение с объемным законом Гука (7), приходим к результату

Механические характеристики Е, , G и К находятся после обработки экспериментальных данных испытаний образцов на различные виды нагрузок. Из физического смысла все эти характеристики не могут быть отрицательными. Кроме того, из последнего выражения следует, что коэффициент Пуассона для изотропного материала не превышает значения 1/2. Таким образом, получаем следующие ограничения для упругих постоянных изотропного материала:

E>0, G>0, K>0, 01/2,

Предельное значение 1/2 приводит к предельному значению К, что соответствует несжимаемому материалу ( 0 при  0). В заключение выразим из соотношений упругости (5) напряжения через деформации. Запишем первое из соотношений (5) в виде

С использованием равенства (9) будем иметь

Аналогичные соотношения можно вывести для х и y. В результате получим

(10)

Здесь использовано соотношение (8) для модуля сдвига. Кроме того, введено обозначение

Потенциальная энергия упругой деформации

Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует сила xdydz. Эта сила совершает работу на перемещении xdx. При увеличении напряжения от нулевого уровня до значения x соответствующая деформация в силу закона Гука также увеличивается от нуля до значения x, а работа пропорциональна заштрихованной на рис. 4 площади: dA=0,5xxdV. Если пренебречь кинетической энергией и потерями, связанными с тепловыми, электромагнитными и другими явлениями, то в силу закона сохранения энергии совершаемая работа перейдет в потенциальную энергию, накапливаемую в процессе деформирования: dA=dU=0,5xxdV. Величина Ф=dU/dV называется удельной потенциальной энергией деформации, имеющей смысл потенциальной энергии, накопленной в единице объема тела. В случае одноосного напряженного состояния