При одновременном действии напряжений x, y и z на главных площадках (т. е. при отсутствии касательных напряжений) потенциальная энергия равна сумме работ, совершаемых силами xdydz, ydxdz, zdxdy на соответствующих перемещениях xdx, ydy, zdz. Удельная потенциальная энергия равна
(2.47)В частном случае чистого сдвига в плоскости Оху, изображенном на рис. 5, сила xydxdz совершает работу на перемещении xydy. Соответствующая этому случаю удельная потенциальная энергия деформации равна
Подобные соотношения будут иметь место при сдвиге в других плоскостях.
В общем случае напряженно-деформированного состояния будем иметь
Если деформации выразить через напряжения с помощью соотношений упругости (5) и (6), то получим эквивалентную форму записи через компоненты тензора напряжений
Выразив напряжения через деформации с использованием соотношений (6) и (10), получим еще одну форму записи для Ф - через компоненты тензора деформаций
Еще одну форму записи для удельной потенциальной энергии деформации получим, разложив тензоры напряжений и деформаций на шаровые тензоры и девиаторы. В результате (11) можно привести к одной из форм
(13)Здесь введены обозначения для - интенсивности касательных напряжений и - интенсивности деформаций сдвига, которые выражаются через вторые инварианты J2(d) и J2(d) девиаторов тензора напряжений и тензора деформаций следующим образом:
Первые слагаемые в (13) соответствуют произведению шаровых составляющих тензоров напряжений и деформаций, а вторые - произведению девиаторных составляющих. Так как шаровой тензор характеризует изменение объема, а девиатор - изменение формы, то соотношения (13) можно интерпретировать как разложение удельной потенциальной энергии на две составляющие: Ф=Ф0 + Фф, где Ф0 соответствует изменению объема без изменения формы, а Фф - изменению формы без изменения объема. Первая составляющая будет вычисляться через компоненты тензора напряжений следующим образом:
Удельную потенциальную энергию изменения формы проще найти не через интенсивность касательных напряжений, а как разность Ф - Ф0. Вычитая (14) из (12), после преобразований получим
8. Механические характеристики конструкционных материалов
Ключевые слова: упругое состояние; пластичное состояние; пределы пропорциональности, упругости, текучести, прочности.
Механические характеристики определяются следующими факторами:
веществом, его структурой и свойствами;
конструктивными особенностями элемента, т. е, размерами, формой, наличием концентраторов, состоянием поверхности;
условиями при нагружении: температурой, скоростью, повторяемостью нагрузки и др.
Конструкционные материалы в процессе деформирования вплоть до разрушения ведут себя по разному. Пластичное поведение характеризуется существенным изменением формы и размеров, при этом к моменту разрушения развиваются значительные деформации, не исчезающие после снятия нагрузки. Такие материалы называют пластичными. При хрупком поведении разрушение наступает при весьма малых деформациях, и материалы с такими свойствами называют хрупкими. Однако одни и те же конструкционные материалы, находящиеся в различных условиях деформирования, ведут себя по разному: при одних условиях проявляют себя как пластичные материалы, при других - как хрупкие. В связи с этим, основные макромеханические характеристики материалов - упругость, пластичность, вязкость и др. правильнее относить не к их свойствам, а к состояниям материала.
Механические состояния деформирунмых тел
В упругом состоянии деформации обратимы, и вся энергия, затраченная на деформирование, при разгрузке возвращается (диссипация энергии отсутствует). Для любого твердого тела процесс деформирования начинается с упругой деформации. Изотропное тело имеет две константы упругости - модуль упругости Е и коэффициент Пуассона . Для анизотропных тел число упругих констант в общем случае равно 21. Из основных констант упругости можно получить их производные - модуль сдвига G, модуль объемной реформации К и постоянную Ламе .
Вязкое сопротивление - в некотором смысле противоположно упругому - работа внешних сил, уравновешенных силами вязкого сопротивления, полностью рассеивается в виде тепла.
Вязкое сопротивление определяется величиной касательной силы, необходимой для поддержания ламинарного скольжения слоев, или течения с определенной скоростью. Таким образом вязкость можно определить как сопротивление течению.
Представление о вязкоупругой деформации дает поведение моделей, сочетающих свойства вязкости и упругости в такой последовательности: при нагружении тела в нем возникает мгновенная упругая деформация, подчиняющаяся закону Гука; далее при том же максимальном напряжении наблюдается вязкая деформация, подчиняющаяся закону Ньютона.
Наиболее распространенными в теории линейной вязко-упругости являются реологические модели Максвелла и Фойгта, дающие связь между напряжениями и деформациями и скоростями их изменения:
- модель Максвелла, - модель Фойгта,тде - коэффициент вязкости.
Пластическое состояние характеризуется наличием остаточных деформаций, фиксируемых после снятия внешних нагрузок. Объем тела при пластической деформации не изменяется; условие постоянства объема записывается в виде
, (эксперименты показывают, что изменение объема не превышает 0,5%).В случае, когда все напряжения изменяются пропорционально одной из составляющих, в процессе пластической деформации направления главных деформаций совпадают с направлениями главных нормальных напряжений, направления максимальных сдвигов - с направлениями максимальных касательных напряжений, а главные направления девиатора напряжений - с главными направлениями девиатора деформаций.
Одной из распространенных моделей поведения материала при упруго-пластических деформациях является модель пластичности, основанная на деформационной теории Генки-Ильюшина, описываемая уравнениями:
- средняя деформация, - среднее напряжение, - безразмерный коэффициент, называемый параметром пластичности (с точностью до множителя он совпадает с интенсивностью касательных напряжений). При =1 эта модель описывает поведение упругого материала.
Высокоэластическое состояние - наиболее характерно для полимеров; особенностями этого состояния являются большая изменяемость формы и деформирование без изменения объема. Для материалов, находящихся в высокоэластическом состоянии, наблюдается существенная зависимость их свойств от длительности и скорости нагружения, температуры и т. д.
Состояние разрушения - состояние, при котором за счет интенсивного развития трещин в материале тела начинается нарушение его сплошности и непрерывности. Физический процесс разрушения материала представляется в виде двух основных стадий-стадии рассеянных разрушений (зарождение и развитие микроскопических трещин) и стадии развития магистральной трещины. Очаги зарождения микротрещин распределены по всему объему материала, находящегося в однородном напряженном состоянии, достаточно равномерно. Относительная длительность первой и второй стадии разрушения зависит от свойств материала, характера напряженного состояния и условий нагружения.
Диаграммы упруго-пластического деформирования конструкционных материалов
Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние. Форма, размеры образца и методика проведения испытаний определяются соответствующими стандартами, например, ГОСТ 34643-81, ГОСТ 1497-73. По результатам испытаний строится зависимость
между напряжениями и деформациями , которая называется диаграммой деформирования. Опыты на растяжение образцов выявляют некоторые общие свойства конструкционных материалов-свойства упругости и пластичности. На рис. 1 показаны типичные кривые деформирования при растяжении образцов из материала сталь 30 и сталь 40Х.