Смекни!
smekni.com

Сложные деформации. Местные напряжения (стр. 2 из 2)

(4)

и

, (5)

где σadm – допускаемое напряжение материала вала при растяжении. Из выражений (4) и (5) можно найти значение осевого момента сопротивления W поперечного сечения вала как

или
и далее величину диаметра вала
.

Местные напряжения

Напряжения при растяжении (сжатии), изгибе, кручении и сложных деформациях, определяемые по рассмотренным выше зависимостям, называют расчетными или номинальными. Экспериментально установлено, что в местах приложения сил, в местах ослабления поперечного сечения отверстиями или выточками, в местах резкого изменения величины поперечного сечения действительные напряжения больше расчетных. Различие действительных и расчетных напряжений наблюдается в ограниченной зоне, т.е. носит местный характер, поэтому и сами напряжения в этой зоне называются местными напряжениями.

Концентрация напряжений

Возникновение больших местных напряжений в местах нарушения правильной цилиндрической или призматической формы стержня называется концентрацией напряжений. Выточки, отверстия, резкие изменения размеров поперечного сечения и другие очаги концентрации напряжений называют концентраторами напряжений.

Так, при растяжении полосы (рис. 2, а, б, в) силами F в сечениях k – k напряжения равны номинальным σ = F/A, где А – площадь поперечного сечения полосы. При наличии в пластине отверстия (рис. 2, б) или выточки (рис. 2, в) распределение напряжений изменяется: у краев отверстия и выточки напряжения максимальны (σmax) и много больше расчетных. Подобное можно наблюдать при изгибе (рис. 3, а), где σ = Ми/W = (F·ℓ)/W, а σmax > σ.

Рис. 2

Количественной мерой концентрации напряжений служит коэффициент концентрации. Различают теоретический и эффективный коэффициенты концентрации напряжений.

Теоретический коэффициент концентрации αK равен отношению наибольшего местного напряжения σmax в сечении к расчетному напряжению σ в этом сечении, т.е. αK = σmax/σ. Наибольшие напряжения σmax в местах концентрации определяют экспериментально или рассчитывают с помощью методов теории упругости. Величина теоретического коэффициента концентрации зависит от вида и размера концентратора и может достигать трех и более. При определении αK не учитывают влияние свойств материала, в частности чувствительность материала к наличию концентраторов. Величина αK определена для большинства встречающихся типовых конструктивных элементов, значения αK приводятся в справочной литературе в виде таблиц и графиков.

Концентрация напряжений различно влияет на прочность конструктивных элементов в зависимости от свойств материала и от характера нагружения. Это учитывается с помощью эффективного коэффициента концентрации Кσ. При статическом нагружении величина Кσ определяется как отношение предела прочности σu образцов без концентраторов к пределу прочности σuк образцов, имеющих заданный концентратор, т.е. Кσ = σuuк. Для пластичных материалов при статических нагрузках концентрация напряжений практически не влияет на прочность. Несущая способность конструкции сохраняется благодаря местной пластической деформации без образования трещин в зоне повышенных напряжений. Можно считать для пластичных материалов Кσ = 1 и не учитывать концентрацию напряжений при статическом нагружении. Для хрупких материалов величина Кσ приближается к значению теоретического коэффициента концентрации αК. Детали из хрупких материалов при наличии концентрации напряжений рассчитывают на прочность по пониженным допускаемым напряжениям σadm. Снижение σadm можно считать как увеличение коэффициента запаса прочности n в Кσ раз (σadm = σu /n).

Концентрация напряжений обязательно должна учитываться в расчетах на прочность при действии переменных нагрузок.

Для уменьшения концентрации напряжений необходимо: применять плавные переходы, называемые галтелями при резком изменении размеров поперечного сечения (рис. 3, б); прорези заменять полукруглыми выточками; увеличивать радиусы закруглений галтелей и выточек; круглые отверстия заменять эллиптическими, вытянутыми вдоль оси стержня; необходимые отверстия располагать в зоне пониженных напряжений и т.д.

Рис. 3 Рис. 4

Контактные напряжения

Большие местные напряжения возникают в местах соприкосновения действующих друг на друга тел. Напряжения, возникающие в месте соприкосновения двух прижатых друг к другу тел, называют контактными. В месте соприкосновения тел вследствие деформации материала образуется площадка контакта.

По контактным напряжениям рассчитывают фрикционные и зубчатые передачи, элементы кулачковых механизмов. Определение контактных напряжений при малых размерах площадок контакта для тел различной конфигурации (контактная задача) рассматривается в теории упругости. Расчет базируется на следующих допущениях: в месте контакта возникают только упругие деформации; поверхности соприкасающихся тел идеально гладкие, и силы давления, распределенные по площадке контакта, нормальны к поверхности контакта; на площадке контакта возникают только нормальные напряжения. При размерах площадок контакта, малых по сравнению с общей поверхностью соприкасающихся тел, для определения контактных напряжений используют зависимости, полученные Г. Герцем. Напряжения в месте контакта зависят от геометрии соприкасающихся тел. Приведем без вывода расчетные формулы для случая сжатия двух цилиндров (рис. 4) с радиусами R1 и R2 и длиной по образующей. Считают, что сила прижатия F передается через узкую площадку контакта шириной b и длиной . Возникающие на площадке нормальные напряжения распределяются по ее ширине в эллиптической зависимости, достигая наибольшего значения в точках оси площадки. Величина наибольших контактных напряжений, как показал Герц, равна

, (6)

где q = F/ℓ – удельная нагрузка; Eп = 2E1E2/(E1 + E2) – приведенный модуль упругости материалов цилиндров; μ – коэффициент Пуассона материала; ρп = R1R2/(R1 ± R2) – приведенный радиус кривизны цилиндров, знак «–» берут в случае контакта выпуклой поверхности радиусом R2 с вогнутой поверхностью радиусом R1. Для материалов с коэффициентом Пуассона μ = 0,3 выражение (6) примет вид

. (7)

Из формулы (7) следует, что контактные напряжения не являются линейной функцией сжимающей силы F и зависят от модуля упругости материала. Они меняются медленнее, чем сама сила, что связано с изменением ширины площадки контакта.

Если размеры площадки контакта соприкасающихся тел значительны и сопоставимы с величиной радиуса кривизны соприкасаемых поверхностей, имеет место деформация смятия. Например, деформацию смятия рассматривают при определении контактных напряжений между боковой поверхностью заклепки, болта и цилиндрической поверхностью отверстия. Считают, что напряжения смятия распределены по площадке контакта равномерно, перпендикулярны к ней и определяются как

σcon = F/Acon, (8)

где F – сила прижатия контактирующих тел; Асоп – площадь смятия. В качестве площади смятия принимают не фактическую, а некоторую условную площадку контакта. Так, если поверхность смятия цилиндрическая (например, поверхность соприкосновения заклепки и листа), то в расчетную формулу (8) подставляют площадь, равную проекции поверхности соприкосновения на диаметральную плоскость. Поэтому, Асоп = k(d·h), где k – число заклепок; d·h – площадь смятия одной заклепки диаметром d; h – высота листа, сминающего заклепку. Если поверхность смятия плоская (смятие призматических шпонок), площадь смятия определяют умножением длины на ширину. Отметим, что допускаемые напряжения на смятие принимают в 2 … 2,5 раза больше допускаемых напряжений на сжатие.


ЛИТЕРАТУРА

1

Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с.

2001

2

Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с.

2004

3

Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.

1999