Смекни!
smekni.com

Теоретичні основи теплотехніки (стр. 18 из 35)

Оскільки вода практично нестислива, то в процес подачі води 3-4 є ізохорним, в TS - координатах точка 3 і 4 співпадають Робота, яка витрачається на стиснення в 34 8 7 є значно меншою чим в циклі Карно.

Термічний ККД циклу Ренкіна може бути визначений з загального виразу:

де l -робота в циклі;

q1 - кількість підведеної теплоти.

Теплота надається робочому тілу на ділянках 4-5-6-1 при постійному тиску. її можна визначити як

q1=h1-h2’,

де h1- ентальпія пари на вході в турбіну;

h2’- ентальпія живильної води.

Теплота, віддана парою в конденсаторі при постійному тиску на ділягках 2-3 буде рівна q2=h2 -h2’, де h2 - ентальпія пари, яка виходить із турбіни.

Зручно визначити ККД циклу паросилової установки за допомогою h і-s -діаграми, де h1 і h2 визначаються за відомими початковими і кінцевими параметрами адіабатного процесу розширення парив турбіні. h2’- визначається за таблицями насиченої пари для тиску p2

Важливою розрахунковою характеристикою циклу є питомий розхід пари d0 який представляє собою відношення часового розходу пари Dо в ідеальному двигуні довиробпеної елекгроенергіїіУ.

Із теплового балансу ідеального двигуна Dо ( h1- h2)=3600N

(18.2)

Із рівняння (18.1) неможливо вияснити характер впливу параметрів стану водяної пари на величину η циклу Ренкіна.

Для цього використаємо поняття еквівалентного циклу Карно, який проходить в межах середніх температур підведення і відведення тепла.

Із рівняння ηt=1-Т2ср/Т1cр випливає, що із збільшенням інтервалу середніх температур циклу (Т2ср і Т1ср) термічний ККД любого циклу збільшується. Збільшення середньої температури Т1ср в процесі підведення теплоти в циклі Ренкіна можна здійснити двома способами.

Перший - збльшення початкового тиску під ведення теплоти від 2,0 до 10,0 МПа при одній і тій же температурі перегрітої гари Т1=500°С і одним і тим же тиском в конденсаторі р2 = 0,004 МПа підвищує ККД циклу Ренкіна від 0,368 до 0,426 тобто на 16,2 %.

Необхідно відмітити, щовласне підвищення тиску ніякої переваги не дає і якщо б підвищення ηt; можна було б досягнути іншим шляхом то йому необхідно було б надати перевагу. Негативним наслідком підвищення початкового тиску є збльшення степені вологості гари в гроцесі розширення.

Другий - підвищення температури перегрітої гари Т’1>Т1 що також приводить до збільшення середньої температури підведення теплоти в процесі (рисі 8.1.4). В зв'язку з цим найбільш сприятливі результати одержані при використанні високих початкових параметрів пари. Мінімальна температура Т2 визначається температурою навколишнього середовища 20-30°С , що відповідає тиску р=0,0024-0,0043Мпа

Навідміну від теоретичного циклу в дійснік циклах процеси протікають необоротно. Робота тертя пари в турбіні перетворюється в теплоту, підвищує ентальпію пари в кінцевому стані від h2 до h2Д. Тому дійсний процес адіабатного розширення пари в турбін, протікає необоротно зі збільшенням ентропії, умовно позначиться не прямою 1-2, а кривою 1-2д (рис. 18.1.5)

Тоді відноснийвнутрішнійККД турбіни

(18.3)

η01 для сучасних машин складає 0,8-0,9. Абсолютний внутршній ККД для циклу Ренкіна:

(18.4)

ηі- сучасних паросилових установок η становить 0,35.

Дня підвищення ККД паросилової установки використовують попередній підігрів живильної води за рахунок відпрацьованої пари (регенеративний цикл), вторинний перегрів пари (цикл з вторинним перегрівом), комбіноване використання тепла (теплофікаційний цикл).

Особливістю регенеративного циклу (рис. 18.1.6) є те, що конденсат після конденсатора попередньо підігрівається в спеціальних теплообмінниках парою, яку відбирають із проміжних ступенів турбіни. Практично доцільне використання 6-8 степеней.

При відборі пари на підігрів конденсату з однієї сторони зменшується розхід теплоти q1 на одержання пари, але з іншої зменшується робота lо в турбіні. Не дивлячись на протилежний характер цих процесів відбір пари завжди підвищує ηt. Це пояснюється тим, що при підігріві живильної води за рахунок теплоти конденсації відпрасованої пари виключається підвід теплоти від зовнішнього джерела на ділянці 4-5' - (рис.18.1 6) і таким чином середня температура підводу теплоти від зовнішнього джерела в регенеративному циклі збільшується (підведення зовнішньої теплоти здійснюється тільки на ділянц 5 -6-1).

Задачі зручно вирішувати по h-s діаграмі. Розглянемо схему і регенеративний цикл з однимвід бором (рис.18.1.6).

Із одного кілограма пари, яка поступає в турбіну, акг пари розширяються тільки до тиску від бору р20 виконуючи корисну роботу і, l1= а(h1-h2),а 1-a кг розширюються в турбіні до кінцевого тиску р2, виконуючи корисну роботу

l2 = (1-а) (h1-h2)

Загальна робота 1 кг пари в регенеративному циклі:

l0 = l1 + l2 = а(h1-h20)+ (1-а) (h1-h2) або l0 = h1-h2- а (h20 -h2)

Кількість теплоти, затраченої на нагрів 1 кг пари, q1= h1-h20

Tермічний ККД регенеративного циклу:

Кількість відібраної парн визначається із балансового рівня теплоти нагрівана:

(1-а)(h'20- h'2)=а(h20- h'2), (18 6)

звідки:

(18.7)

де h20- ентальпіяшрипритиску відбору;

h'20- ентальпія парн при тиску виходу парн із турбіни;

h'2- ентальпія парн при тиску в конденсаторі.

18.2 Цикл з вторинним перегрівом пари

Як було встановлено негативним наслідком підвищення початкового тискуєзошьшення степені вологості гвривкінці розішрення.

Щоб уткнути підвищення вологості в кінці адіабатного розширення за допустиму межу, використовують підвищення початкової температури перегрітої пари, а також вторинний або проміжний перегрів (рисі 8.2.1 та 182.2). Суть проміжного перегріву полягає в тому, що пару після розширення 1-2 в першій ступені турбіни І при постійному тиску рпр вторинно перегрівають в другому перегрівачу ПП2 до температури Т’1.

Потім пар а поступає в наступну ступень турбіни, депроходить розширення 1’-2 до тиску в конденсаторі. В результаті вторинного Перегріву степінь сухості пари збільшується з x1; до х2 відповідно точки 20 i 2.

Одночасно може підвищуватись і термічний коефіцієнт циклу.

Рис 18.2.1. Принципова схема паросилової установки з вторинним перегрівом пари.

18.3 Теплофікаційний цикл

В описаних цикл ах значна частина теплоти (більше 50%), що надається парі в паровому котлі, відводиться в конденсаторі. Вода, яка має температуру 25-30°С не може бути використана в огвлювапьних системах або для технологічних нужд.

Щоб в подальшому використовувати теплоту необхідно підвищити її температуру, для цього необхідно підвищити тиск парц яка виходить із турбіни. Такі установки працюють з погіршеним вакуумом або з протитиском. Поряд з виробництвом електроенергії вони відпускають теплоту в вигляді пари або гарячої води і називаються теплофікаційннмн(ТЕЦ). Схема і цикл показані на рисунку 18.3.1 та 18 3.2.

В цій установці відсутній конденсатор і пар а після турбіни з підвищеним тиском і температурою Тп направляється до споживача теплоти ТС, віддаючи теплоту споживачу, пара конд енсуєть ся і насосом направляється в котел.

Підвищення протитиску приводить до зменшення електричної енергії і термічного ККД, але загальне використання теплоти qвих при цьому значно підвищується.

qвих=l0 + q2 (13 8)

Комбінований спосіб виробництвом електроенергії і теплової енергії є одним з головних методів підвищення економічності теплових ел ектростанцій і служить основою тепгтофікації.

Характеристикою комбінованого процесу буде служити відношення використаної енергії іо l0 + q2 до підведеної теплоти в процесі q1

(18.9)

В ідеальних випадках, коли вся теплота q2 використовується

= 100%. В дійсності
досягає 60-80%.

Щоб в великому діагвзоні міняти теплове і електричне навантаження на більшості ТЕЦ використовують конденсаційні турбіни з проміжним відбором пащ, при тиску, необхідному для споживачів теплоти

18.4 Парогазовий цикл

Значне підвищення ефективності ПСУ можна досягнути шляхом комбінування газотурбінної установки з паросиловою (рнс.18.4.1, 18.4.2).

Продукти згорання після парового котла з температурою біля 700°С поступають в газову турбіну Т1. Попередній нагрів конденсату, який поступає в котел, проводиться випускними газами газової турбіни (процес d-а) в газоводяному підігрівану ГВ. Пара з котла поступає в парову турбіну Т2.

Відповідно в таких умовах ефективно використовується гази, що виходять із котла, а також покращується використання газів, які залишають газову турбіну. Переваги газотурбінного циклу - використання більш високої темстератури робочого тіла. В газових турбінах до 700°С, в паросилових установках - 500-550 ЯС. Перевага перед газовими є те, що в паровому котлі використовується більш низька температура холодного джерела. В газотурбінному температура на виході складає 150°С, а в паросиловому 25-30°С. Комбінована установка дає економію палива на 15% в порівнянні з паротурбінною.