w - швидкість потоку, м/с;
і - ентальпія газу, Дж/кг. Рівняння першого закону термодинаміки мас вигляд:
dg-di-vdp (1.2)
Прирівнюючи формули (1,1) і (1,2) одержуємо:
wdw=-vdp (1,3)
Це значить, шо приріст кінетичної енергії визначається роботою зміни тиску vdp; при збільшенні швидкості потоку (dw>0) тиск газу (dр<0) зменшується, і навпаки.
При русі газу в каналі кінцевої довжини (рис. 1.1, а) його параметри змінюються від v1, р1, Т1, до vу, ру, Ту (рис. 1.1, б). Робота зміни тиску -
в рv - координатах зображується площею М1УКМ (рис 1.1, в).В соплах і дифузорах контакт газу з каналом короткочасний, тому обміном з навколишнім середовищем нехтують. Це дозволяг розглядати витікання як адіабатний процес (dg=0). В цьому випадку рівняння (1.1) приймає вигляд wdw=-dі, а для каналу кінцевої довжини (сопла) після інтегрування:
(1.4)це: w1,wy - швидкість газу відповідно на вході і в гирлі каналу, м/с;
і1, іу - ентальпія відповідно на вході і в усті каналу, Дж/кг, Для сопел wу >>w1, тому величиною w1 частіше всього нехтують. В цьому випадку
або (1.5)якщо ентальпія виражена в кілоджоулях на кілограм (кДж/кг).
Для газів що повністю або приблизно підпорядковуються рівнянню рv=RТ і справедливі умови і=СрТ, Сp=RК/(К-1), рівняння (1.5) приймає вигляд:
де: К - показник адіабати, К=Сp/Сv;
R - питома газова стала, Дж/кг К,
Якшо відома площа перерізу в усті сопла f, то із умови нерозривності потоку масовий розхід газу:
(1.7)з врахуванням (1.7):
Із (1.7) і (1.8) слідує, шо для даного газу (k-соnst) з початковими параметрами р1, і V1, швидкість його потоку і розхід визначається тільки відношенням тисків Рv/Р1=β. Так швидкість і розхід зростають при збільшенні Р1. Це досягається збільшенням абсолютного тиску Р, середовища, з якого витікає газ (див. рис. 1.1 а). При цьому тиск в усті сопла Ру рівний тиску за соплом P2: до тих пір, поки швидкість потоку не досягне швидкості поширення звуку а в даному середовищі. З цією швидкістю поширюються пружні хвилі тиску (розрідження). Тиск Р2, при якому (wv досягає швидкості звуку, називають критичним і позначають Ркр а відношення цього тиску до тиску Р1- критичним відношенням Ркр / Р1= β кр
Хвиля зменшення тиску в усті сопла, яке виникає при Р2 < Ркр (β < β кр) не може поширюватись в соплі назустріч течії, так як а=w, як наслідок для всіх значень Р2 < Ркр (β < β кр) В усті сопла тиск Р2 =Ркр,. Тому, якщо витікання газу докритнчне (β < β кр), в рівняннях (1.6) і (1.8) замість відношеннч Рv / Р1 використовують величину Р2 / Р1= β,, а якщо витікання критичне і зверхкритичне (β < β кр) величину β кр=β кр /Р1. Залежність wv =f(β) i M =f1(β) зображені на рис. 1,2.
Рис 1.2
В рівняннях (1.6) і (1.8) для двоатомних газів К=1,4 і β кр =0,528, для багатоатомних газів К =1,3, а β кр =0,546.
Витікання газу супроводжується помітними втратами кінетичної енергії потоку на тертя між шарами газу і газу зі стійками каналу.
Із-за вказаних втрат кінетичної енергії дійсна швидкість витікання w w д, менша теоретичної w. Величину
φ= wд/ w
називають швидкісним коефіцієнтом сопла, а відношення дійсного масового розходу газу Мд до теоретичного М - коефіцієнтом розходу μ
μ = Мд / М (1.10)
Дійсний масовий розхід за 1 с. визначають, використовуючи швидкість витікання і питомий об’єм vд газу в усті сопла:
Мд=fy
або безпосереднім вимірюванням.
Лабораторна установка
Схема лабораторної установки показана на рис. 1.3.
Рис.1.3 1- пневм о циліндр; 2- впускний клапан; 3-випускний клапан; 4 -балон; 5 - запобіжний клапан 6-10- манометри; 7 - трубопроводи; 8 - фільтр; 9-редуктор тиску; 11 - сопло; 12 - стравлюючий клапан; 13 - ковпак; 14 -посудина; 15 – шкала 16 - вказівник.
Повітря Із пневмоциліндра 1 поступає в балон 4, з якого через фільтр 8, редуктор тиску 9 і сопло 11 поступає по трубопроводу 7 в ковпак ІЗ, який знаходиться в посудині 14, заповненій водою. Повітря, яке поступає в ковпак ІЗ, витісняючи з нього воду, піднімає його вверх. Висоту підйому ковпака 13, визначаємо по шкалі 15 за допомогою вказівника 16. Випуск повітря із ковпака 13 проводиться за допомогою стравлюючого клапана 12.
Діаметр ковпака дорівнює 150 мм.
Постановка дослідів
1.Одержати завдання на досліди на шість-вісіи значень Р ,
2.Розрахувати абсолютний тиск (Рабс< Па) для всіх значень β. Тиск в ковпаку 13 (Р2 Па) прийняти рівним атмосферному.
По тиску Р1абс визначити тиск Р1м для манометра 10 для всіх значень р,
З допомогою п не вм о циліндра і заповнити балон 4 стиснутим повітрям до тиску 2-3 атмосфери по манометру 6.
Редуктором тиску 9 відрегулювати тиск повітря Р1м по манометру 10 (при відкритому стравлюючому клапані 12).
По шкалі 13 відмітити положення показника 16
Закрнти стравлюючий клапан 12, одночасно включивши секундомір і визначити положення показника 16 по шкалі 15 при підйомі ковпака 13 на
Відкрити стравлюючий клапан 12 і відрегулювати редуктором тиску 9 по манометру 10 тиск Р1м (для другого значення 0) і продовжити досліди,
Результати дослідів занести а таблицю.
Обробка дослідних даних
1.По рівняннях (1,6) і (1.8) визначити теоретичну швидкість витікання повітря і теоретичний масовий розхід повітря.
2,По рівняннях (1.9) і (1,10) підрахувати швидкісний коефіцієнт сопла φ і коефіцієнту розходу μ.
3.Побудувати графік залежності Mд =f(β) і визначити дійсний максимальний розхід повітря Mд =f(β)
4,Побудувати графік залежності wд =f(β)
Контрольні питання
Пояснити роботу установки по її схемі.
Пояснити черговість включення установки.
Як перевести установку в слідуючий режим роботи,
4.Записати і пояснити рівняння першого закону термодинаміки для потоку.
Пояснити характер зміни розходу повітря із зміною величини β,
Що називають критичним розходом і швидкістю витікання
7.Що називають коефіцієнтом розходу/г і швидкісним коефіцієнтом розходу φ
8.Який канал називають соплом, а який дифузором?
9.Чому при Р1 > Ркр збільшення тиску перед соплом не збільшує розхід повітря?
10.Коли наступає критичний режим витікання ічим він хара ктеризусться
11.Як визначити розрахункове і дійсне максимально можливе значення р для витікання повітря через сопло лабораторної установки
12.Яку швидкість має повітря при витіканні із сопла
Список літератури
1. Недужий НА.. Алабовский А.Н. Техническая термодинамика й теплопередача, К.: Вища школа, 1981, - 248 с.
2. Чечеткин А,В., Занемонец Н,А. Тєплотехника, М.: Вьісшая школа, 1986. - 344 с.
3. Міністерство освіти України
4. Тернопільський Державний Технічний університет імені Івана Пулюя
Кафедра обладнання харчових технологій
Методичні вказівки
до лабораторної роботи № 2
«Дослідження теплообмінного апарату».
Тернопіль 2003
Дослідження теплообмінного апарату
Мета роботи; Вивчити процес теплообміну в теплообмінних апаратах, ознайомитись з методикою і'х випробування, одержати навики в проведенні експериментів, їх призначення, вплив різних факторів на інтенсивність теплообміну.
Загальні відомості
А Типи теплообмінних апаратів
Теплообмінниками називаються такі апарати, в яких в Збувається передача тепла від одного теплоносія до іншого (процес нагрівання або охолодження).
В теплосилових установках до теплообмінних апаратів належать; паровий котел, пароперегрівач, водяний економайзер, підігрівач повітря, конденсатор, деаератор та ін.
По принципу дії теплообмінні апарати розділяються на рекуперативні, регенеративні, змішувальні із внутрішнім тепловиділенням.
В рекуперативних теплообмінниках тепло від одного теплоносія до другого передасться через стінку (поверхню теплообміну є котлах, пароперегрівачах та ін.)
В регенеративних теплообмінниках тепло передається поперемінним омиванням гарячим і холодним тілом спеціальних металічних плит (насадів -акумуляторів тепла), що мас місце в доменному виробництві.
В теплообмінниках змішуючого типу (контактних) тепло передається безпосередньо змішуванням обох тіл. Вони найпростішої конструкції, в них повніше використовується тепло, але мають обмежену область використання.
Такі теплообмінники - градірні - мають місце на теплові»: електростанціях, в розімкну тих системах охолодження двигунів внутрішнього згоряння, компресорних станцій та ін.
4.Теплообмінники з внутрішнім тепловиділенням мають місце в ядерній енергетиці.
Б. Схеми теплообмінних апаратів
Рекуперативні теплообмінники виготовляються трубчатими або пластинчастими. В свого чергу трубчасті теплообмінники бувають одно-, дво- і багатоходові.
Зміна температури обох теплоносіїв вздовж поверхні нагріву залежить ВІД схеми їх руху.
Рис, 2, Графіки зміни температури вздовж теплообмінника а)при прямоточній схемі б)при протитечійній схемі